These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28363331)

  • 21. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas Technologies and Applications in Food Bacteria.
    Stout E; Klaenhammer T; Barrangou R
    Annu Rev Food Sci Technol; 2017 Feb; 8():413-437. PubMed ID: 28245154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens.
    Goulin EH; Galdeano DM; Granato LM; Matsumura EE; Dalio RJD; Machado MA
    Microbiol Res; 2019 Sep; 226():1-9. PubMed ID: 31284938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [CRISPR-Cas systems as weapons against pathogenic bacteria].
    Bikard D; Barrangou R
    Biol Aujourdhui; 2017; 211(4):265-270. PubMed ID: 29956653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci.
    Rodrigues M; McBride SW; Hullahalli K; Palmer KL; Duerkop BA
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31527030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.
    Kirchner M; Schneider S
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13508-14. PubMed ID: 26382836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of CRISPR-Cas in advancing precision periodontics.
    Barbour A; Glogauer J; Grinfeld L; Ostadsharif Memar R; Fine N; Tenenbaum H; Glogauer M
    J Periodontal Res; 2021 Jun; 56(3):454-461. PubMed ID: 33452819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9: From a bacterial immune system to genome-edited human cells in clinical trials.
    Kick L; Kirchner M; Schneider S
    Bioengineered; 2017 May; 8(3):280-286. PubMed ID: 28287876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/CAS9 Technologies.
    Williams BO; Warman ML
    J Bone Miner Res; 2017 May; 32(5):883-888. PubMed ID: 28230927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic genome engineering via CRISPR-Cas systems.
    Moreno AM; Mali P
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jul; 9(4):. PubMed ID: 28198142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualization analysis of CRISPR/Cas9 gene editing technology studies.
    Du QS; Cui J; Zhang CJ; He K
    J Zhejiang Univ Sci B; 2016 Oct.; 17(10):798-806. PubMed ID: 27704749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.
    Ali Q; Wahl LM
    J Biol Dyn; 2017 Aug; 11(sup2):264-284. PubMed ID: 28426329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EMT signaling: potential contribution of CRISPR/Cas gene editing.
    Mohammadinejad R; Biagioni A; Arunkumar G; Shapiro R; Chang KC; Sedeeq M; Taiyab A; Hashemabadi M; Pardakhty A; Mandegary A; Thiery JP; Aref AR; Azimi I
    Cell Mol Life Sci; 2020 Jul; 77(14):2701-2722. PubMed ID: 32008085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.
    Yosef I; Goren MG; Edgar R; Qimron U
    Methods Mol Biol; 2015; 1311():233-50. PubMed ID: 25981477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.