These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28363419)
21. Optimum separation condition of peptides in reversed-phase liquid chromatography. Lee SK; Row KH J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):115-20. PubMed ID: 14698244 [TBL] [Abstract][Full Text] [Related]
22. The role of ion-pairing in peak deformations in overloaded reversed-phase chromatography of peptides. Tarafder A; Aumann L; Morbidelli M J Chromatogr A; 2010 Nov; 1217(45):7065-73. PubMed ID: 20875642 [TBL] [Abstract][Full Text] [Related]
23. Influence of the pore size of reversed phase materials on peptide purification processes. Gétaz D; Dogan N; Forrer N; Morbidelli M J Chromatogr A; 2011 May; 1218(20):2912-22. PubMed ID: 21450297 [TBL] [Abstract][Full Text] [Related]
24. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents. Wujcik CE; Tweed J; Kadar EP J Sep Sci; 2010 Mar; 33(6-7):826-33. PubMed ID: 20087867 [TBL] [Abstract][Full Text] [Related]
25. Utility of retention prediction model for investigation of peptide separation selectivity in reversed-phase liquid chromatography: impact of concentration of trifluoroacetic acid, column temperature, gradient slope and type of stationary phase. Gilar M; Xie H; Jaworski A Anal Chem; 2010 Jan; 82(1):265-75. PubMed ID: 19957962 [TBL] [Abstract][Full Text] [Related]
26. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography II: the competitive case. Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T J Chromatogr A; 2013 Nov; 1314():70-6. PubMed ID: 24050597 [TBL] [Abstract][Full Text] [Related]
27. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations. Scrosati PM; Konermann L Anal Chem; 2023 Feb; 95(7):3892-3900. PubMed ID: 36745777 [TBL] [Abstract][Full Text] [Related]
28. Paradigm Shift: Major Role of Ion-Pairing-Dependent Size Exclusion Effects in Bottom-Up Proteomics Reversed-Phase Peptide Separations. Yeung D; Spicer V; Zahedi RP; Krokhin OV Anal Chem; 2024 Jun; 96(23):9721-9728. PubMed ID: 38807522 [TBL] [Abstract][Full Text] [Related]
29. Replacement of acetonitrile by ethanol as solvent in reversed phase chromatography of biomolecules. Brettschneider F; Jankowski V; Günthner T; Salem S; Nierhaus M; Schulz A; Zidek W; Jankowski J J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Mar; 878(9-10):763-8. PubMed ID: 20153704 [TBL] [Abstract][Full Text] [Related]
30. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography. Bobály B; Tóth E; Drahos L; Zsila F; Visy J; Fekete J; Vékey K J Chromatogr A; 2014 Jan; 1325():155-62. PubMed ID: 24373532 [TBL] [Abstract][Full Text] [Related]
31. Modelling the pH dependent retention and competitive adsorption of charged and ionizable solutes in mixed-mode and reversed-phase liquid chromatography. Haseeb A; Fernandes MX; Samuelsson J J Chromatogr A; 2024 Aug; 1730():465058. PubMed ID: 38876077 [TBL] [Abstract][Full Text] [Related]
32. Comparison between heterogeneous multi-Langmuir and homogeneous electrostatically modified Langmuir models in accounting for the adsorption of small organic ions in reversed-phase liquid chromatography. Gritti F; Guiochon G J Chromatogr A; 2010 Aug; 1217(35):5584-94. PubMed ID: 20637471 [TBL] [Abstract][Full Text] [Related]
34. Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Krokhin OV; Spicer V Anal Chem; 2009 Nov; 81(22):9522-30. PubMed ID: 19848410 [TBL] [Abstract][Full Text] [Related]
35. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Tomlinson AJ; Chicz RM Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763 [TBL] [Abstract][Full Text] [Related]
36. Effect of polar interactions on the nonlinear behavior of phenol and aniline in reversed phase liquid chromatography. Vajda P; Bocian S; Buszewski B; Felinger A J Chromatogr A; 2012 Mar; 1228():155-64. PubMed ID: 22261221 [TBL] [Abstract][Full Text] [Related]
37. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors. Zhao YG; Chen XH; Yao SS; Pan SD; Li XP; Jin MC Anal Sci; 2012; 28(10):967-71. PubMed ID: 23059992 [TBL] [Abstract][Full Text] [Related]
38. Effect of the ionic strength on the adsorption process of an ionic surfactant onto a C18-bonded charged surface hybrid stationary phase at low pH. Gritti F; Guiochon G J Chromatogr A; 2013 Mar; 1282():46-57. PubMed ID: 23419351 [TBL] [Abstract][Full Text] [Related]
39. Adsorption behaviors of neutral and ionizable compounds on hybrid stationary phases in the absence (BEH-C18) and the presence (CSH-C18) of immobile surface charges. Gritti F; Guiochon G J Chromatogr A; 2013 Mar; 1282():58-71. PubMed ID: 23422897 [TBL] [Abstract][Full Text] [Related]
40. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter. Guo J; Zhai Z; Wang L; Wang Z; Wu J; Zhang B; Zhang J Environ Pollut; 2017 Jun; 225():175-183. PubMed ID: 28371732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]