These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 28363647)

  • 21. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp.
    Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a novel biphasic calcium phosphate in standardized bone defects: a histologic and histomorphometric study in the mandibles of minipigs.
    Jensen SS; Yeo A; Dard M; Hunziker E; Schenk R; Buser D
    Clin Oral Implants Res; 2007 Dec; 18(6):752-60. PubMed ID: 17888014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Healing potentials of polymethylmethacrylate bone cement combined with platelet gel in the critical-sized radial bone defect of rats.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    PLoS One; 2018; 13(4):e0194751. PubMed ID: 29608574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The primacy of octacalcium phosphate collagen composites in bone regeneration.
    Kamakura S; Sasaki K; Homma T; Honda Y; Anada T; Echigo S; Suzuki O
    J Biomed Mater Res A; 2007 Dec; 83(3):725-33. PubMed ID: 17559110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application.
    Maji K; Dasgupta S; Pramanik K; Bissoyi A
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced bone regeneration by gelatin-β-tricalcium phosphate composites enabling controlled release of bFGF.
    Omata K; Matsuno T; Asano K; Hashimoto Y; Tabata Y; Satoh T
    J Tissue Eng Regen Med; 2014 Aug; 8(8):604-11. PubMed ID: 22782937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone.
    Chiba S; Anada T; Suzuki K; Saito K; Shiwaku Y; Miyatake N; Baba K; Imaizumi H; Hosaka M; Itoi E; Suzuki O
    J Biomed Mater Res A; 2016 Nov; 104(11):2833-42. PubMed ID: 27391056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects.
    Ahn SH; Kim CS; Suk HJ; Lee YJ; Choi SH; Chai JK; Kim CK; Han SB; Cho KS
    J Periodontol; 2003 Jun; 74(6):787-97. PubMed ID: 12886988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of injectable chitosan/biphasic calcium phosphate bone cement and in vitro and in vivo evaluation.
    Rattanachan ST; Srakaew NL; Thaitalay P; Thongsri O; Dangviriyakul R; Srisuwan S; Suksaweang S; Widelitz RB; Chuong CM; Srithunyarat T; Kampa N; Kaenkangploo D; Hoisang S; Jittimanee S; Wipoosak P; Kamlangchai P; Yongvanit K; Tuchpramuk P
    Biomed Mater; 2020 Sep; 15(5):055038. PubMed ID: 32217815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model.
    Chen S; Lau P; Lei M; Peng J; Tang T; Wang X; Qin L; Kumta SM
    J Tissue Eng Regen Med; 2017 Jan; 11(1):34-43. PubMed ID: 24668843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells.
    Biazar E; Heidari Keshel S; Tavirani MR; Jahandideh R
    Artif Cells Nanomed Biotechnol; 2015 Apr; 43(2):112-6. PubMed ID: 24456006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiological evaluation of the effect of biphasic calcium phosphate scaffold (HA+TCP) with 5, 10 and 20 percentage of porosity on healing of segmental bone defect in rabbit radius.
    Farahpour MR; Sharifi D; B AA; Veshkini A; Soheil A
    Bratisl Lek Listy; 2012; 113(9):529-33. PubMed ID: 22979907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein 2 from a biodegradable sponge composed of gelatin and β-tricalcium phosphate.
    Fujita N; Matsushita T; Ishida K; Sasaki K; Kubo S; Matsumoto T; Kurosaka M; Tabata Y; Kuroda R
    J Tissue Eng Regen Med; 2012 Apr; 6(4):291-8. PubMed ID: 21706776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone.
    Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T
    Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.