These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 28363691)
1. MYC and HIF in shaping immune response and immune metabolism. Gnanaprakasam JNR; Sherman JW; Wang R Cytokine Growth Factor Rev; 2017 Jun; 35():63-70. PubMed ID: 28363691 [TBL] [Abstract][Full Text] [Related]
2. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Wang R; Dillon CP; Shi LZ; Milasta S; Carter R; Finkelstein D; McCormick LL; Fitzgerald P; Chi H; Munger J; Green DR Immunity; 2011 Dec; 35(6):871-82. PubMed ID: 22195744 [TBL] [Abstract][Full Text] [Related]
3. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Liu L; Lu Y; Martinez J; Bi Y; Lian G; Wang T; Milasta S; Wang J; Yang M; Liu G; Green DR; Wang R Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1564-9. PubMed ID: 26811453 [TBL] [Abstract][Full Text] [Related]
4. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. Caro-Maldonado A; Wang R; Nichols AG; Kuraoka M; Milasta S; Sun LD; Gavin AL; Abel ED; Kelsoe G; Green DR; Rathmell JC J Immunol; 2014 Apr; 192(8):3626-36. PubMed ID: 24616478 [TBL] [Abstract][Full Text] [Related]
5. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. Sharma BK; Kolhe R; Black SM; Keller JR; Mivechi NF; Satyanarayana A FASEB J; 2016 Jan; 30(1):262-75. PubMed ID: 26330493 [TBL] [Abstract][Full Text] [Related]
6. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563 [TBL] [Abstract][Full Text] [Related]
7. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Gordan JD; Thompson CB; Simon MC Cancer Cell; 2007 Aug; 12(2):108-13. PubMed ID: 17692803 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of murine TH 17 cells: Impact on cell fate and function. Wang R; Solt LA Eur J Immunol; 2016 Apr; 46(4):807-16. PubMed ID: 26893133 [TBL] [Abstract][Full Text] [Related]
9. Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Huang LE Cell Death Differ; 2008 Apr; 15(4):672-7. PubMed ID: 18188166 [TBL] [Abstract][Full Text] [Related]
10. Metabolic checkpoints in activated T cells. Wang R; Green DR Nat Immunol; 2012 Oct; 13(10):907-15. PubMed ID: 22990888 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive characterization of the impact of mycophenolic acid on the metabolism of Jurkat T cells. Fernández-Ramos AA; Marchetti-Laurent C; Poindessous V; Antonio S; Petitgas C; Ceballos-Picot I; Laurent-Puig P; Bortoli S; Loriot MA; Pallet N Sci Rep; 2017 Sep; 7(1):10550. PubMed ID: 28874730 [TBL] [Abstract][Full Text] [Related]
12. Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Zhdanov AV; Dmitriev RI; Golubeva AV; Gavrilova SA; Papkovsky DB Biochim Biophys Acta; 2013 Jun; 1830(6):3553-69. PubMed ID: 23462283 [TBL] [Abstract][Full Text] [Related]
13. Metabolic reprogramming and metabolic dependency in T cells. Wang R; Green DR Immunol Rev; 2012 Sep; 249(1):14-26. PubMed ID: 22889212 [TBL] [Abstract][Full Text] [Related]
14. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation. Arif T; Krelin Y; Shoshan-Barmatz V Biochim Biophys Acta; 2016 Aug; 1857(8):1228-1242. PubMed ID: 27080741 [TBL] [Abstract][Full Text] [Related]
15. Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. Larbi A; Zelba H; Goldeck D; Pawelec G J Leukoc Biol; 2010 Feb; 87(2):265-73. PubMed ID: 19892848 [TBL] [Abstract][Full Text] [Related]
16. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. Koshiji M; Kageyama Y; Pete EA; Horikawa I; Barrett JC; Huang LE EMBO J; 2004 May; 23(9):1949-56. PubMed ID: 15071503 [TBL] [Abstract][Full Text] [Related]
17. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Wilde BR; Ayer DE Br J Cancer; 2015 Dec; 113(11):1529-33. PubMed ID: 26469830 [TBL] [Abstract][Full Text] [Related]
18. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Kunkl M; Sambucci M; Ruggieri S; Amormino C; Tortorella C; Gasperini C; Battistini L; Tuosto L Cells; 2019 Jun; 8(6):. PubMed ID: 31212712 [TBL] [Abstract][Full Text] [Related]
19. Metabolic phenotype of bladder cancer. Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of T cell metabolism. Hough KP; Chisolm DA; Weinmann AS Mol Immunol; 2015 Dec; 68(2 Pt C):520-6. PubMed ID: 26298576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]