These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 28363934)
1. Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. Ueki K; Fruman DA; Yballe CM; Fasshauer M; Klein J; Asano T; Cantley LC; Kahn CR J Biol Chem; 2017 Mar; 292(13):5608. PubMed ID: 28363934 [No Abstract] [Full Text] [Related]
2. Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Luo J; Sobkiw CL; Logsdon NM; Watt JM; Signoretti S; O'Connell F; Shin E; Shim Y; Pao L; Neel BG; Depinho RA; Loda M; Cantley LC Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10238-43. PubMed ID: 16006513 [TBL] [Abstract][Full Text] [Related]
3. Domain analysis reveals striking functional differences between the regulatory subunits of phosphatidylinositol 3-kinase (PI3K), p85α and p85β. Ito Y; Vogt PK; Hart JR Oncotarget; 2017 Aug; 8(34):55863-55876. PubMed ID: 28915558 [TBL] [Abstract][Full Text] [Related]
4. Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement. Brachmann SM; Yballe CM; Innocenti M; Deane JA; Fruman DA; Thomas SM; Cantley LC Mol Cell Biol; 2005 Apr; 25(7):2593-606. PubMed ID: 15767666 [TBL] [Abstract][Full Text] [Related]
5. Enhanced T cell proliferation in mice lacking the p85beta subunit of phosphoinositide 3-kinase. Deane JA; Trifilo MJ; Yballe CM; Choi S; Lane TE; Fruman DA J Immunol; 2004 Jun; 172(11):6615-25. PubMed ID: 15153476 [TBL] [Abstract][Full Text] [Related]
6. C-SH2 point mutation converts p85β regulatory subunit of phosphoinositide 3-kinase to an anti-aging gene. Kano Y; Hiragami F; Motoda H; Akiyama J; Koike Y; Gomita Y; Inoue S; Kawaura A; Furuta T; Kawamura K Sci Rep; 2019 Sep; 9(1):12683. PubMed ID: 31481652 [TBL] [Abstract][Full Text] [Related]
7. PI3K p85 β regulatory subunit deficiency does not affect NK cell differentiation and increases NKG2D-mediated activation. Rojas JM; Spada R; Sanz-Ortega L; Morillas L; Mejías R; Mulens-Arias V; Pérez-Yagüe S; Barber DF J Leukoc Biol; 2016 Dec; 100(6):1285-1296. PubMed ID: 27381007 [TBL] [Abstract][Full Text] [Related]
8. The N-terminal 34 residues of the 55 kDa regulatory subunits of phosphoinositide 3-kinase interact with tubulin. Inukai K; Funaki M; Nawano M; Katagiri H; Ogihara T; Anai M; Onishi Y; Sakoda H; Ono H; Fukushima Y; Kikuchi M; Oka Y; Asano T Biochem J; 2000 Mar; 346 Pt 2(Pt 2):483-9. PubMed ID: 10677370 [TBL] [Abstract][Full Text] [Related]
9. Differential signaling by regulatory subunits of phosphoinositide-3-kinase influences cell survival in INS-1E insulinoma cells. Schrader J; Niebel P; Rossi A; Archontidou-Aprin E; Hörsch D Exp Clin Endocrinol Diabetes; 2015 Feb; 123(2):118-25. PubMed ID: 25393342 [TBL] [Abstract][Full Text] [Related]
10. Expression of the splice variants of the p85alpha regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients. Lefai E; Roques M; Vega N; Laville M; Vidal H Biochem J; 2001 Nov; 360(Pt 1):117-26. PubMed ID: 11695998 [TBL] [Abstract][Full Text] [Related]
11. The SH3 and BH domains of the p85alpha adapter subunit play a critical role in regulating class Ia phosphoinositide 3-kinase function. Beeton CA; Das P; Waterfield MD; Shepherd PR Mol Cell Biol Res Commun; 1999 May; 1(2):153-7. PubMed ID: 10356365 [TBL] [Abstract][Full Text] [Related]
12. Lower phosphoinositide 3-kinase (PI 3-kinase) activity and differential expression levels of selective catalytic and regulatory PI 3-kinase subunit isoforms in prefrontal cortex and hippocampus of suicide subjects. Dwivedi Y; Rizavi HS; Teppen T; Zhang H; Mondal A; Roberts RC; Conley RR; Pandey GN Neuropsychopharmacology; 2008 Sep; 33(10):2324-40. PubMed ID: 18075493 [TBL] [Abstract][Full Text] [Related]
13. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. del Rincon JP; Iida K; Gaylinn BD; McCurdy CE; Leitner JW; Barbour LA; Kopchick JJ; Friedman JE; Draznin B; Thorner MO Diabetes; 2007 Jun; 56(6):1638-46. PubMed ID: 17363744 [TBL] [Abstract][Full Text] [Related]
14. Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Mauvais-Jarvis F; Ueki K; Fruman DA; Hirshman MF; Sakamoto K; Goodyear LJ; Iannacone M; Accili D; Cantley LC; Kahn CR J Clin Invest; 2002 Jan; 109(1):141-9. PubMed ID: 11781359 [TBL] [Abstract][Full Text] [Related]
15. Role of the liver in glucose homeostasis in PI 3-kinase p85alpha-deficient mice. Aoki K; Matsui J; Kubota N; Nakajima H; Iwamoto K; Takamoto I; Tsuji Y; Ohno A; Mori S; Tokuyama K; Murakami K; Asano T; Aizawa S; Tobe K; Kadowaki T; Terauchi Y Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E842-53. PubMed ID: 19176357 [TBL] [Abstract][Full Text] [Related]
16. SH3 domain of the phosphatidylinositol 3-kinase regulatory subunit is responsible for the formation of a sequestration complex with insulin receptor substrate-1. Ikegami Y; Inukai K; Awata T; Asano T; Katayama S Biochem Biophys Res Commun; 2008 Jan; 365(3):433-8. PubMed ID: 17991427 [TBL] [Abstract][Full Text] [Related]
17. Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Ito Y; Hart JR; Ueno L; Vogt PK Proc Natl Acad Sci U S A; 2014 Nov; 111(47):16826-9. PubMed ID: 25385636 [TBL] [Abstract][Full Text] [Related]
18. Frontline: The p85alpha isoform of phosphoinositide 3-kinase is essential for a subset of B cell receptor-initiated signaling responses. Hess KL; Donahue AC; Ng KL; Moore TI; Oak J; Fruman DA Eur J Immunol; 2004 Nov; 34(11):2968-76. PubMed ID: 15384044 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo studies of a naturally occurring variant of the human p85alpha regulatory subunit of the phosphoinositide 3-kinase: inhibition of protein kinase B and relationships with type 2 diabetes, insulin secretion, glucose disappearance constant, and insulin sensitivity. Hansen L; Zethelius B; Berglund L; Reneland R; Hansen T; Berne C; Lithell H; Hemmings BA; Pedersen O Diabetes; 2001 Mar; 50(3):690-3. PubMed ID: 11246893 [TBL] [Abstract][Full Text] [Related]