These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 28363957)

  • 21. Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination.
    Cheng F; Li H; Zhang K; Li QH; Xie D; Xue YP; Zheng YG
    J Biotechnol; 2020 Mar; 312():35-43. PubMed ID: 32135177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional structure of meso-diaminopimelic acid dehydrogenase from Corynebacterium glutamicum.
    Scapin G; Reddy SG; Blanchard JS
    Biochemistry; 1996 Oct; 35(42):13540-51. PubMed ID: 8885833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The three-dimensional structure of the ternary complex of Corynebacterium glutamicum diaminopimelate dehydrogenase-NADPH-L-2-amino-6-methylene-pimelate.
    Cirilli M; Scapin G; Sutherland A; Vederas JC; Blanchard JS
    Protein Sci; 2000 Oct; 9(10):2034-7. PubMed ID: 11106178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application.
    Akita H; Hayashi J; Sakuraba H; Ohshima T
    Front Microbiol; 2018; 9():1760. PubMed ID: 30123202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-directed mutagenesis of a hexapeptide segment involved in substrate recognition of phenylalanine dehydrogenase from Thermoactinomyces intermedius.
    Kataoka K; Takada H; Yoshimura T; Furuyoshi S; Esaki N; Ohshima T; Soda K
    J Biochem; 1993 Jul; 114(1):69-75. PubMed ID: 8407879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a new leucine dehydrogenase with preferred specificity for NADP+ by site-directed mutagenesis of the strictly NAD+-specific enzyme.
    Galkin A; Kulakova L; Ohshima T; Esaki N; Soda K
    Protein Eng; 1997 Jun; 10(6):687-90. PubMed ID: 9278282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alteration of substrate specificity of valine dehydrogenase from Streptomyces albus.
    Hyun CG; Kim SS; Lee IH; Suh JW
    Antonie Van Leeuwenhoek; 2000 Dec; 78(3-4):237-42. PubMed ID: 11386345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism-Guided Computational Design Drives
    Wu T; Chen Y; Wei W; Song W; Wu J; Wen J; Hu G; Li X; Gao C; Chen X; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1879-1892. PubMed ID: 38847341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and characterization of chimeric enzyme consisting of an amino-terminal domain of phenylalanine dehydrogenase and a carboxy-terminal domain of leucine dehydrogenase.
    Kataoka K; Takada H; Tanizawa K; Yoshimura T; Esaki N; Ohshima T; Soda K
    J Biochem; 1994 Oct; 116(4):931-6. PubMed ID: 7883771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for D-phenylalanine synthesis.
    Gao X; Huang F; Feng J; Chen X; Zhang H; Wang Z; Wu Q; Zhu D
    Appl Environ Microbiol; 2013 Aug; 79(16):5078-81. PubMed ID: 23728814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel d-2-hydroxy acid dehydrogenase with high substrate preference for phenylpyruvate originating from lactic acid bacteria: Structural analysis on the substrate specificity.
    Lee HS; Park J; Yoo YJ; Yeon YJ
    Enzyme Microb Technol; 2019 Jun; 125():37-44. PubMed ID: 30885323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates.
    Seah SY; Britton KL; Rice DW; Asano Y; Engel PC
    Biochemistry; 2002 Sep; 41(38):11390-7. PubMed ID: 12234181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
    Richter N; Breicha K; Hummel W; Niefind K
    J Mol Biol; 2010 Dec; 404(3):353-62. PubMed ID: 20887732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.
    Wakamatsu T; Sakuraba H; Kitamura M; Hakumai Y; Fukui K; Ohnishi K; Ashiuchi M; Ohshima T
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27815281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering.
    Feil IK; Hendle J; Schomburg D
    Protein Eng; 1997 Mar; 10(3):255-62. PubMed ID: 9153075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the Highly Conserved and Differentiated Cofactor-Binding Sites of meso-Diaminopimelate Dehydrogenase StDAPDH.
    Gao X; Ma Q; Chen M; Dong M; Pu Z; Zhang X; Song Y
    J Chem Inf Model; 2019 May; 59(5):2331-2338. PubMed ID: 30807172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specificity.
    Brunhuber NM; Thoden JB; Blanchard JS; Vanhooke JL
    Biochemistry; 2000 Aug; 39(31):9174-87. PubMed ID: 10924111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.
    Rosano C; Bisso A; Izzo G; Tonetti M; Sturla L; De Flora A; Bolognesi M
    J Mol Biol; 2000 Oct; 303(1):77-91. PubMed ID: 11021971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the mechanism of domain closure and substrate specificity of glutamate dehydrogenase from Clostridium symbiosum.
    Stillman TJ; Migueis AM; Wang XG; Baker PJ; Britton KL; Engel PC; Rice DW
    J Mol Biol; 1999 Jan; 285(2):875-85. PubMed ID: 9878450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP
    Chen H; Zhu Z; Huang R; Zhang YP
    Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.