These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28364002)
1. Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery. Zhao J; Cheng F; Zhao Z Cancer Res; 2017 Jun; 77(11):2810-2821. PubMed ID: 28364002 [TBL] [Abstract][Full Text] [Related]
2. Proteome-Scale Investigation of Protein Allosteric Regulation Perturbed by Somatic Mutations in 7,000 Cancer Genomes. Shen Q; Cheng F; Song H; Lu W; Zhao J; An X; Liu M; Chen G; Zhao Z; Zhang J Am J Hum Genet; 2017 Jan; 100(1):5-20. PubMed ID: 27939638 [TBL] [Abstract][Full Text] [Related]
3. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536 [TBL] [Abstract][Full Text] [Related]
4. An Atlas of the Human Kinome Reveals the Mutational Landscape Underlying Dysregulated Phosphorylation Cascades in Cancer. Olow A; Chen Z; Niedner RH; Wolf DM; Yau C; Pankov A; Lee EP; Brown-Swigart L; van 't Veer LJ; Coppé JP Cancer Res; 2016 Apr; 76(7):1733-45. PubMed ID: 26921330 [TBL] [Abstract][Full Text] [Related]
5. The mutational landscape of phosphorylation signaling in cancer. Reimand J; Wagih O; Bader GD Sci Rep; 2013 Oct; 3():2651. PubMed ID: 24089029 [TBL] [Abstract][Full Text] [Related]
7. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392 [TBL] [Abstract][Full Text] [Related]
8. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach. Vuong H; Cheng F; Lin CC; Zhao Z Genome Med; 2014; 6(10):81. PubMed ID: 25360158 [TBL] [Abstract][Full Text] [Related]
9. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach. Zhao J; Cheng F; Wang Y; Arteaga CL; Zhao Z Mol Cell Proteomics; 2016 Feb; 15(2):642-56. PubMed ID: 26657081 [TBL] [Abstract][Full Text] [Related]
10. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Carrella D; Manni I; Tumaini B; Dattilo R; Papaccio F; Mutarelli M; Sirci F; Amoreo CA; Mottolese M; Iezzi M; Ciolli L; Aria V; Bosotti R; Isacchi A; Loreni F; Bardelli A; Avvedimento VE; di Bernardo D; Cardone L Oncotarget; 2016 Sep; 7(37):58743-58758. PubMed ID: 27542212 [TBL] [Abstract][Full Text] [Related]
11. Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development. Mészáros B; Zeke A; Reményi A; Simon I; Dosztányi Z Biol Direct; 2016 May; 11():23. PubMed ID: 27150584 [TBL] [Abstract][Full Text] [Related]
12. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Cheng F; Hong H; Yang S; Wei Y Brief Bioinform; 2017 Jul; 18(4):682-697. PubMed ID: 27296652 [TBL] [Abstract][Full Text] [Related]
13. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC). Wang Y; Guo X; Bray MJ; Ding Z; Zhao Z BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):515. PubMed ID: 27556922 [TBL] [Abstract][Full Text] [Related]
14. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations. Prieto G; Fullaondo A; Rodríguez JA Sci Rep; 2016 May; 6():25869. PubMed ID: 27174732 [TBL] [Abstract][Full Text] [Related]
15. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Reimand J; Bader GD Mol Syst Biol; 2013; 9():637. PubMed ID: 23340843 [TBL] [Abstract][Full Text] [Related]
16. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure. Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156 [TBL] [Abstract][Full Text] [Related]
17. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Andersen JN; Sathyanarayanan S; Di Bacco A; Chi A; Zhang T; Chen AH; Dolinski B; Kraus M; Roberts B; Arthur W; Klinghoffer RA; Gargano D; Li L; Feldman I; Lynch B; Rush J; Hendrickson RC; Blume-Jensen P; Paweletz CP Sci Transl Med; 2010 Aug; 2(43):43ra55. PubMed ID: 20686178 [TBL] [Abstract][Full Text] [Related]
18. Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types. Chen T; Wang Z; Zhou W; Chong Z; Meric-Bernstam F; Mills GB; Chen K BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):394. PubMed ID: 27356755 [TBL] [Abstract][Full Text] [Related]
19. Small-molecule binding sites to explore protein-protein interactions in the cancer proteome. Xu D; Jalal SI; Sledge GW; Meroueh SO Mol Biosyst; 2016 Oct; 12(10):3067-87. PubMed ID: 27452673 [TBL] [Abstract][Full Text] [Related]
20. Integrating mutation and gene expression cross-sectional data to infer cancer progression. Fleck JL; Pavel AB; Cassandras CG BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]