BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28364020)

  • 1. Facilitated dissociation of transcription factors from single DNA binding sites.
    Kamar RI; Banigan EJ; Erbas A; Giuntoli RD; Olvera de la Cruz M; Johnson RC; Marko JF
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):E3251-E3257. PubMed ID: 28364020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response.
    Giuntoli RD; Linzer NB; Banigan EJ; Sing CE; de la Cruz MO; Graham JS; Johnson RC; Marko JF
    J Mol Biol; 2015 Sep; 427(19):3123-36. PubMed ID: 26220077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitated Dissociation of a Nucleoid Protein from the Bacterial Chromosome.
    Hadizadeh N; Johnson RC; Marko JF
    J Bacteriol; 2016 Jun; 198(12):1735-42. PubMed ID: 27044624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA.
    Graham JS; Johnson RC; Marko JF
    Nucleic Acids Res; 2011 Mar; 39(6):2249-59. PubMed ID: 21097894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A.
    Sarangi MK; Zvoda V; Holte MN; Becker NA; Peters JP; Maher LJ; Ansari A
    Nucleic Acids Res; 2019 Apr; 47(6):2871-2883. PubMed ID: 30698746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors.
    Donovan BT; Chen H; Jipa C; Bai L; Poirier MG
    Elife; 2019 Mar; 8():. PubMed ID: 30888317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic N-terminus of yeast Nhp6A regulates the mechanism of its DNA flexibility enhancement.
    Zhang J; McCauley MJ; Maher LJ; Williams MC; Israeloff NE
    J Mol Biol; 2012 Feb; 416(1):10-20. PubMed ID: 22197373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monomeric and dimeric bZIP transcription factor GCN4 bind at the same rate to their target DNA site.
    Cranz S; Berger C; Baici A; Jelesarov I; Bosshard HR
    Biochemistry; 2004 Jan; 43(3):718-27. PubMed ID: 14730976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA.
    Kamagata K; Ouchi K; Tan C; Mano E; Mandali S; Wu Y; Takada S; Takahashi S; Johnson RC
    Nucleic Acids Res; 2020 Nov; 48(19):10820-10831. PubMed ID: 32997109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes.
    Skoko D; Wong B; Johnson RC; Marko JF
    Biochemistry; 2004 Nov; 43(43):13867-74. PubMed ID: 15504049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae.
    Stillman DJ
    Biochim Biophys Acta; 2010; 1799(1-2):175-80. PubMed ID: 20123079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise physical models of protein-DNA interaction from high-throughput data.
    Kinney JB; Tkacik G; Callan CG
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):501-6. PubMed ID: 17197415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between Saccharomyces cerevisiae Mitochondrial DNA-Binding Protein Abf2p and Cce1p Resolvase.
    Samoilova EO; Krasheninnikov IA; Levitskii SA
    Biochemistry (Mosc); 2016 Oct; 81(10):1111-1117. PubMed ID: 27908236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule FRET analysis of DNA binding and bending by yeast HMGB protein Nhp6A.
    Coats JE; Lin Y; Rueter E; Maher LJ; Rasnik I
    Nucleic Acids Res; 2013 Jan; 41(2):1372-81. PubMed ID: 23221634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo.
    Kamagata K; Itoh Y; Tan C; Mano E; Wu Y; Mandali S; Takada S; Johnson RC
    Nucleic Acids Res; 2021 Sep; 49(15):8642-8664. PubMed ID: 34352099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and specificity of the Mbp1-DNA interaction.
    Deleeuw L; Tchernatynskaia AV; Lane AN
    Biochemistry; 2008 Jun; 47(24):6378-85. PubMed ID: 18491920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes.
    Feldmann EA; Galletto R
    Biochemistry; 2014 Dec; 53(48):7471-83. PubMed ID: 25382181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.
    Brewer LR; Friddle R; Noy A; Baldwin E; Martin SS; Corzett M; Balhorn R; Baskin RJ
    Biophys J; 2003 Oct; 85(4):2519-24. PubMed ID: 14507714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.