BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28364142)

  • 1. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy.
    Schwarz M; Kloß S; Stöckel S; Pollok S; Holländer A; Cialla-May D; Weber K; Popp J
    Anal Bioanal Chem; 2017 Jun; 409(15):3779-3788. PubMed ID: 28364142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of water pathogens by Raman microspectroscopy.
    Kusić D; Kampe B; Rösch P; Popp J
    Water Res; 2014 Jan; 48():179-89. PubMed ID: 24103393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis.
    Kloß S; Lorenz B; Dees S; Labugger I; Rösch P; Popp J
    Anal Bioanal Chem; 2015 Nov; 407(27):8333-41. PubMed ID: 26041453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential adhesion of surface groups of Bacillus subtilis on gibbsite at different ionic strengths and pHs revealed by ATR-FTIR spectroscopy.
    Hong ZN; Jiang J; Li JY; Xu RK
    Colloids Surf B Biointerfaces; 2018 May; 165():83-91. PubMed ID: 29459260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria.
    Read DS; Whiteley AS
    J Microbiol Methods; 2015 Feb; 109():79-83. PubMed ID: 25533216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of bacteria by means of Raman spectroscopy.
    Pahlow S; Meisel S; Cialla-May D; Weber K; Rösch P; Popp J
    Adv Drug Deliv Rev; 2015 Jul; 89():105-20. PubMed ID: 25895619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates.
    Fan C; Hu Z; Mustapha A; Lin M
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1053-61. PubMed ID: 22005743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Identification of Pseudomonas spp. via Raman Spectroscopy Using Pyoverdine as Capture Probe.
    Pahlow S; Stöckel S; Pollok S; Cialla-May D; Rösch P; Weber K; Popp J
    Anal Chem; 2016 Feb; 88(3):1570-7. PubMed ID: 26705822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopic differentiation of planktonic bacteria and biofilms.
    Kusić D; Kampe B; Ramoji A; Neugebauer U; Rösch P; Popp J
    Anal Bioanal Chem; 2015 Sep; 407(22):6803-13. PubMed ID: 26123442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.
    Kumar B N V; Kampe B; Rösch P; Popp J
    Analyst; 2015 Jul; 140(13):4584-93. PubMed ID: 26029748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of meat-associated pathogens via Raman microspectroscopy.
    Meisel S; Stöckel S; Rösch P; Popp J
    Food Microbiol; 2014 Apr; 38():36-43. PubMed ID: 24290623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of spoilage associated bacteria using Raman-microspectroscopy combined with multivariate statistical analysis.
    Klein D; Breuch R; von der Mark S; Wickleder C; Kaul P
    Talanta; 2019 May; 196():325-328. PubMed ID: 30683371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Photothermal and Surface-Enhanced Raman Spectroscopy Effect from Spiky Noble Metal Nanoparticles Wrapped within Graphene-Polymer Layers: Using Layer-by-layer Modified Reduced Graphene Oxide as Reactive Precursors.
    Li X; Zhang Y; Wu Y; Duan Y; Luan X; Zhang Q; An Q
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19353-61. PubMed ID: 26269466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of bacteria by surface-enhanced Raman spectroscopy.
    Sengupta A; Mujacic M; Davis EJ
    Anal Bioanal Chem; 2006 Nov; 386(5):1379-86. PubMed ID: 16933128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level.
    Silge A; Schumacher W; Rösch P; Da Costa Filho PA; Gérard C; Popp J
    Syst Appl Microbiol; 2014 Jul; 37(5):360-7. PubMed ID: 24958608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single bacteria identification by Raman spectroscopy.
    Strola SA; Baritaux JC; Schultz E; Simon AC; Allier C; Espagnon I; Jary D; Dinten JM
    J Biomed Opt; 2014; 19(11):111610. PubMed ID: 25028774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy--a prospective tool in the life sciences.
    Petry R; Schmitt M; Popp J
    Chemphyschem; 2003 Jan; 4(1):14-30. PubMed ID: 12596463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopic identification of single bacterial cells under antibiotic influence.
    Münchberg U; Rösch P; Bauer M; Popp J
    Anal Bioanal Chem; 2014 May; 406(13):3041-50. PubMed ID: 24652157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy.
    Laucks ML; Sengupta A; Junge K; Davis EJ; Swanson BD
    Appl Spectrosc; 2005 Oct; 59(10):1222-8. PubMed ID: 16274534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman spectroscopy of bacteria and pollen.
    Sengupta A; Laucks ML; Davis EJ
    Appl Spectrosc; 2005 Aug; 59(8):1016-23. PubMed ID: 16105210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.