These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 28364757)
1. Regenerating time series from ordinal networks. McCullough M; Sakellariou K; Stemler T; Small M Chaos; 2017 Mar; 27(3):035814. PubMed ID: 28364757 [TBL] [Abstract][Full Text] [Related]
2. Characterizing stochastic time series with ordinal networks. Pessa AAB; Ribeiro HV Phys Rev E; 2019 Oct; 100(4-1):042304. PubMed ID: 31770975 [TBL] [Abstract][Full Text] [Related]
3. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. McCullough M; Small M; Stemler T; Iu HH Chaos; 2015 May; 25(5):053101. PubMed ID: 26026313 [TBL] [Abstract][Full Text] [Related]
4. Symbolic diffusion entropy rate of chaotic time series as a surrogate measure for the largest Lyapunov exponent. Shiozawa K; Miyano T Phys Rev E; 2019 Sep; 100(3-1):032221. PubMed ID: 31639895 [TBL] [Abstract][Full Text] [Related]
5. Visibility graphlet approach to chaotic time series. Mutua S; Gu C; Yang H Chaos; 2016 May; 26(5):053107. PubMed ID: 27249947 [TBL] [Abstract][Full Text] [Related]
6. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks. Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685 [TBL] [Abstract][Full Text] [Related]
7. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Sakellariou K; Stemler T; Small M Phys Rev E; 2019 Dec; 100(6-1):062307. PubMed ID: 31962534 [TBL] [Abstract][Full Text] [Related]
8. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Almendral JA; Leyva I; Sendiña-Nadal I Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510026 [TBL] [Abstract][Full Text] [Related]
9. Characterizing system dynamics with a weighted and directed network constructed from time series data. Sun X; Small M; Zhao Y; Xue X Chaos; 2014 Jun; 24(2):024402. PubMed ID: 24985456 [TBL] [Abstract][Full Text] [Related]
10. Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods. Zou Y; Donner RV; Donges JF; Marwan N; Kurths J Chaos; 2010 Dec; 20(4):043130. PubMed ID: 21198100 [TBL] [Abstract][Full Text] [Related]
11. Time-series analysis of networks: exploring the structure with random walks. Weng T; Zhao Y; Small M; Huang DD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022804. PubMed ID: 25215778 [TBL] [Abstract][Full Text] [Related]
12. Memory and betweenness preference in temporal networks induced from time series. Weng T; Zhang J; Small M; Zheng R; Hui P Sci Rep; 2017 Feb; 7():41951. PubMed ID: 28157194 [TBL] [Abstract][Full Text] [Related]
13. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
14. Estimation of the correlation dimension of heart rate using surrogate data techniques. Thayer JF; Moulden SA Biomed Sci Instrum; 1997; 33():491-6. PubMed ID: 9731409 [TBL] [Abstract][Full Text] [Related]
15. Statistical properties of sampled networks by random walks. Yoon S; Lee S; Yook SH; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046114. PubMed ID: 17500968 [TBL] [Abstract][Full Text] [Related]
16. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics. Olivares F; Zunino L; Soriano MC; Pérez DG Phys Rev E; 2019 Oct; 100(4-1):042215. PubMed ID: 31770914 [TBL] [Abstract][Full Text] [Related]
17. An improved surrogate method for detecting the presence of chaos in gait. Miller DJ; Stergiou N; Kurz MJ J Biomech; 2006; 39(15):2873-6. PubMed ID: 16325825 [TBL] [Abstract][Full Text] [Related]
18. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series. Kottlarz I; Parlitz U Chaos; 2023 May; 33(5):. PubMed ID: 37133925 [TBL] [Abstract][Full Text] [Related]
19. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory. Tewatia DK; Tolakanahalli RP; Paliwal BR; Tomé WA Phys Med Biol; 2011 Apr; 56(7):2161-81. PubMed ID: 21389355 [TBL] [Abstract][Full Text] [Related]
20. Estimating topological entropy using ordinal partition networks. Sakellariou K; Stemler T; Small M Phys Rev E; 2021 Feb; 103(2-1):022214. PubMed ID: 33736019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]