BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28365062)

  • 1. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.
    Zimmermann EA; Bouguerra S; Londoño I; Moldovan F; Aubin CÉ; Villemure I
    J Biomech; 2017 May; 56():76-82. PubMed ID: 28365062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation.
    Valteau B; Grimard G; Londono I; Moldovan F; Villemure I
    Bone; 2011 Nov; 49(5):996-1004. PubMed ID: 21784187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Connect Tissue Res; 2005; 46(4-5):211-9. PubMed ID: 16546824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue and cellular morphological changes in growth plate explants under compression.
    Amini S; Veilleux D; Villemure I
    J Biomech; 2010 Sep; 43(13):2582-8. PubMed ID: 20627250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of mechanical loading on the mRNA expression of growth-plate cells.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Stud Health Technol Inform; 2002; 91():114-8. PubMed ID: 15457706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    J Orthop Res; 2015 Nov; 33(11):1587-93. PubMed ID: 26019113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations.
    Gao J; Roan E; Williams JL
    PLoS One; 2015; 10(4):e0124862. PubMed ID: 25885547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of mechanical loading on the metabolism of growth plate chondrocytes.
    Ueki M; Tanaka N; Tanimoto K; Nishio C; Honda K; Lin YY; Tanne Y; Ohkuma S; Kamiya T; Tanaka E; Tanne K
    Ann Biomed Eng; 2008 May; 36(5):793-800. PubMed ID: 18278554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in the growth plate associated with growth modulation by sustained compression or distraction.
    Stokes IA; Clark KC; Farnum CE; Aronsson DD
    Bone; 2007 Aug; 41(2):197-205. PubMed ID: 17532281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes.
    Xu T; Yang K; You H; Chen A; Wang J; Xu K; Gong C; Shao J; Ma Z; Guo F; Qi J
    Bone; 2013 Oct; 56(2):304-11. PubMed ID: 23831868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Part 2. Review and meta-analysis of studies on modulation of longitudinal bone growth and growth plate activity: A micro-scale perspective.
    D'Andrea CR; Alfraihat A; Singh A; Anari JB; Cahill PJ; Schaer T; Snyder BD; Elliott D; Balasubramanian S
    J Orthop Res; 2021 May; 39(5):919-928. PubMed ID: 33458882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth plate explants respond differently to in vitro static and dynamic loadings.
    Sergerie K; Parent S; Beauchemin PF; Londoño I; Moldovan F; Villemure I
    J Orthop Res; 2011 Apr; 29(4):473-80. PubMed ID: 21337387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrocyte Deformations Under Mild Dynamic Loading Conditions.
    Komeili A; Otoo BS; Abusara Z; Sibole S; Federico S; Herzog W
    Ann Biomed Eng; 2021 Feb; 49(2):846-857. PubMed ID: 32959133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease.
    Grover JP; Vanderby R; Leiferman EM; Wilsman NJ; Noonan KJ
    J Pediatr Orthop; 2007; 27(5):485-92. PubMed ID: 17585254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra.
    Benoit A; Mustafy T; Londono I; Grimard G; Aubin CE; Villemure I
    J Musculoskelet Neuronal Interact; 2016 Sep; 16(3):211-20. PubMed ID: 27609036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of dynamic axial loading on the rat growth plate.
    Ohashi N; Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2002 Feb; 17(2):284-92. PubMed ID: 11811559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force.
    Robling AG; Duijvelaar KM; Geevers JV; Ohashi N; Turner CH
    Bone; 2001 Aug; 29(2):105-13. PubMed ID: 11502470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The domain of hypertrophic chondrocytes in growth plates growing at different rates.
    Breur GJ; Lapierre MD; Kazmierczak K; Stechuchak KM; McCabe GP
    Calcif Tissue Int; 1997 Nov; 61(5):418-25. PubMed ID: 9351885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.