These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28365300)

  • 21. Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using Terahertz Pulsed Imaging.
    Brock D; Zeitler JA; Funke A; Knop K; Kleinebudde P
    Eur J Pharm Biopharm; 2014 Oct; 88(2):434-42. PubMed ID: 25034044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of mechanistic simulations as a quantitative risk-ranking tool within the quality by design framework.
    Stocker E; Toschkoff G; Sacher S; Khinast JG
    Int J Pharm; 2014 Nov; 475(1-2):245-55. PubMed ID: 25175727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process.
    Wang J; Hemenway J; Chen W; Desai D; Early W; Paruchuri S; Chang SY; Stamato H; Varia S
    Int J Pharm; 2012 May; 427(2):163-9. PubMed ID: 22301427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of Unit Operations in Formulation Development of Tablets Using Computational Fluid Dynamics.
    Hemamanjushree S; Tippavajhala VK
    AAPS PharmSciTech; 2020 Mar; 21(3):103. PubMed ID: 32166477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of pan coating processes: Prediction of tablet content uniformity and determination of critical process parameters.
    Chen W; Chang SY; Kiang S; Marchut A; Lyngberg O; Wang J; Rao V; Desai D; Stamato H; Early W
    J Pharm Sci; 2010 Jul; 99(7):3213-25. PubMed ID: 20091834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy.
    Römer M; Heinämäki J; Strachan C; Sandler N; Yliruusi J
    AAPS PharmSciTech; 2008; 9(4):1047-53. PubMed ID: 18841479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reality of in-line tablet coating.
    Cahyadi C; Chan LW; Heng PW
    Pharm Dev Technol; 2013 Feb; 18(1):2-16. PubMed ID: 21649557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling weight variability in a pan coating process using Monte Carlo simulations.
    Pandey P; Katakdaunde M; Turton R
    AAPS PharmSciTech; 2006 Oct; 7(4):83. PubMed ID: 17233536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an automation system for a tablet coater.
    Ruotsalainen M; Heinämäki J; Rantanen J; Yliruusi J
    AAPS PharmSciTech; 2002; 3(2):E14. PubMed ID: 12916951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Critical Quality Attributes in Tablet Film Coating and Design Space Determination Using Pilot-Scale Experimental Data.
    Liu H; Meyer R; Flamm M; Wareham L; Metzger M; Tantuccio A; Yoon S
    AAPS PharmSciTech; 2021 Jan; 22(1):17. PubMed ID: 33389197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angular circulation speed of tablets in a vibratory tablet coating pan.
    Kumar R; Wassgren C
    AAPS PharmSciTech; 2013 Mar; 14(1):339-51. PubMed ID: 23325382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation and evaluation of tablet-coating burst based on finite element method.
    Yang Y; Li J; Miao KS; Shan WG; Tang L; Yu HN
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1384-92. PubMed ID: 26727401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of film coating process in a novel rotating fluidized bed.
    Nakamura H; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2006 Jun; 54(6):839-46. PubMed ID: 16755055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.
    Zacour BM; Pandey P; Subramanian G; Gao JZ; Nikfar F
    Drug Dev Ind Pharm; 2014 Jun; 40(6):829-37. PubMed ID: 23638984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving tablet coating robustness by selecting critical process parameters from retrospective data.
    Galí A; García-Montoya E; Ascaso M; Pérez-Lozano P; Ticó JR; Miñarro M; Suñé-Negre JM
    Pharm Dev Technol; 2016 Sep; 21(6):688-97. PubMed ID: 26017851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 100% visual inspection of tablets produced with continuous direct compression and coating.
    Barimani S; Šibanc R; Tomaževič D; Meier R; Kleinebudde P
    Int J Pharm; 2022 Feb; 614():121465. PubMed ID: 35026312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug tablet thickness estimations using air-coupled acoustics.
    Akseli I; Cetinkaya C
    Int J Pharm; 2008 Mar; 351(1-2):165-73. PubMed ID: 18022335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating.
    Dennison TJ; Smith J; Hofmann MP; Bland CE; Badhan RK; Al-Khattawi A; Mohammed AR
    PLoS One; 2016; 11(8):e0157267. PubMed ID: 27548263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multispectral UV Imaging for Determination of the Tablet Coating Thickness.
    Novikova A; Carstensen JM; Zeitler JA; Rades T; Leopold CS
    J Pharm Sci; 2017 Jun; 106(6):1560-1569. PubMed ID: 28259766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terahertz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets.
    Maurer L; Leuenberger H
    Int J Pharm; 2009 Mar; 370(1-2):8-16. PubMed ID: 19084585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.