BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 28365510)

  • 1. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).
    Liang X; Guo C; Liao C; Liu S; Wick LY; Peng D; Yi X; Lu G; Yin H; Lin Z; Dang Z
    Environ Pollut; 2017 Jun; 225():129-140. PubMed ID: 28365510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.
    Lau EV; Gan S; Ng HK; Poh PE
    Environ Pollut; 2014 Jan; 184():640-9. PubMed ID: 24100092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil.
    Shi Z; Chen J; Liu J; Wang N; Sun Z; Wang X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12769-74. PubMed ID: 26002358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review.
    Lamichhane S; Bal Krishna KC; Sarukkalige R
    J Environ Manage; 2017 Sep; 199():46-61. PubMed ID: 28527375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes.
    Ashraf U; Lone MS; Masrat R; Shah RA; Afzal S; Chat OA; Dar AA
    Chemosphere; 2020 Mar; 242():125160. PubMed ID: 31669988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions.
    Sales PS; Fernández MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10158-64. PubMed ID: 26873826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment technologies for PAH-contaminated sites: a critical review.
    Gitipour S; Sorial GA; Ghasemi S; Bazyari M
    Environ Monit Assess; 2018 Aug; 190(9):546. PubMed ID: 30140952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure.
    Lu H; Wang W; Li F; Zhu L
    Sci Total Environ; 2019 Feb; 653():658-666. PubMed ID: 30759591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs).
    Gan S; Lau EV; Ng HK
    J Hazard Mater; 2009 Dec; 172(2-3):532-49. PubMed ID: 19700241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.
    Kuppusamy S; Thavamani P; Venkateswarlu K; Lee YB; Naidu R; Megharaj M
    Chemosphere; 2017 Feb; 168():944-968. PubMed ID: 27823779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness.
    Peng S; Wu W; Chen J
    Chemosphere; 2011 Feb; 82(8):1173-7. PubMed ID: 21215990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems.
    Wei W; Ran Z; He H; Zhou K; Huangfu Z; Yu J
    Chemosphere; 2020 Sep; 254():126854. PubMed ID: 32957278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons.
    Makkar RS; Rockne KJ
    Environ Toxicol Chem; 2003 Oct; 22(10):2280-92. PubMed ID: 14551990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant--PAHs system.
    Zhou W; Zhu L
    Environ Pollut; 2007 May; 147(1):66-73. PubMed ID: 17070632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment.
    Adrion AC; Nakamura J; Shea D; Aitken MD
    Environ Sci Technol; 2016 Apr; 50(7):3838-45. PubMed ID: 26919662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil.
    Wang X; Sun L; Wang H; Wu H; Chen S; Zheng X
    Environ Technol; 2018 Jul; 39(13):1733-1744. PubMed ID: 28562189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system.
    Hussein TA; Ismail ZZ
    Environ Technol; 2013; 34(1-4):351-61. PubMed ID: 23530349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil heterogeneity and surfactant desorption influence PAH distribution during electroremediation at a tar oil-contaminated site.
    Heister K; Lima AT
    Environ Monit Assess; 2019 Sep; 191(10):625. PubMed ID: 31501945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?
    Davin M; Starren A; Deleu M; Lognay G; Colinet G; Fauconnier ML
    Chemosphere; 2018 Mar; 194():414-421. PubMed ID: 29223812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.