These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 28365510)

  • 21. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils.
    Yap CL; Gan S; Ng HK
    Chemosphere; 2011 Jun; 83(11):1414-30. PubMed ID: 21316731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons.
    Kabir-ud-Din ; Shafi M; Bhat PA; Dar AA
    J Hazard Mater; 2009 Aug; 167(1-3):575-81. PubMed ID: 19232468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of polycyclic aromatic hydrocarbons from different soil fractions by persulfate oxidation.
    Liao X; Liu Q; Li Y; Gong X; Cao H
    J Environ Sci (China); 2019 Apr; 78():239-246. PubMed ID: 30665642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil.
    Liang X; Guo C; Wei Y; Lin W; Yi X; Lu G; Dang Z
    Chemosphere; 2016 Feb; 144():583-90. PubMed ID: 26397474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Enhanced bioremediation of coking plant soils contaminated with polycyclic aromatic hydrocarbons].
    Lu XX; Li XL; Ma J; Wu SK; Chen CQ; Wu W
    Huan Jing Ke Xue; 2011 Mar; 32(3):864-9. PubMed ID: 21634189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
    Alegbeleye OO; Opeolu BO; Jackson VA
    Environ Manage; 2017 Oct; 60(4):758-783. PubMed ID: 28573478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.
    Amezcua-Allieri MA; Ávila-Chávez MA; Trejo A; Meléndez-Estrada J
    Chemosphere; 2012 Mar; 86(10):985-93. PubMed ID: 22197016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil.
    Sánchez-Trujillo MA; Morillo E; Villaverde J; Lacorte S
    Environ Pollut; 2013 Jul; 178():52-8. PubMed ID: 23542443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Desorption of polycyclic aromatic hydrocarbons from soil in presence of surfactants].
    Chen J; Hu JD; Wang XJ; Tao S
    Huan Jing Ke Xue; 2006 Feb; 27(2):361-5. PubMed ID: 16686206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin--a microcosm approach.
    Dave BP; Ghevariya CM; Bhatt JK; Dudhagara DR; Rajpara RK
    Mar Pollut Bull; 2014 Feb; 79(1-2):123-9. PubMed ID: 24382467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants.
    Zhu L; Zhou W
    Environ Pollut; 2008 Mar; 152(1):130-7. PubMed ID: 17583400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant.
    Zhou W; Yang J; Lou L; Zhu L
    Environ Pollut; 2011 May; 159(5):1198-204. PubMed ID: 21353355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemically reversible foam enhanced flushing for PAHs-contaminated soil: Stability of surfactant foam, effects of soil factors, and surfactant reversible recovery.
    Li Y; Hu J; Liu H; Zhou C; Tian S
    Chemosphere; 2020 Dec; 260():127645. PubMed ID: 32693262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of surfactants for the remediation of contaminated soils: a review.
    Mao X; Jiang R; Xiao W; Yu J
    J Hazard Mater; 2015 Mar; 285():419-35. PubMed ID: 25528485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: Existing concepts, emerging trends, and future prospects.
    Adeola AO; Forbes PBC
    Water Environ Res; 2021 Mar; 93(3):343-359. PubMed ID: 32738166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition.
    Cheng KY; Zhao ZY; Wong JW
    Environ Technol; 2004 Oct; 25(10):1159-65. PubMed ID: 15551830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants.
    Zhu L; Feng S
    Chemosphere; 2003 Nov; 53(5):459-67. PubMed ID: 12948529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar.
    Hauswirth SC; Miller CT
    J Contam Hydrol; 2014 Oct; 167():44-60. PubMed ID: 25190671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.