BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28365539)

  • 1. Electrospinning of continuous poly (L-lactide) yarns: Effect of twist on the morphology, thermal properties and mechanical behavior.
    Maleki H; Gharehaghaji AA; Dijkstra PJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():231-237. PubMed ID: 28365539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug release behavior of electrospun twisted yarns as implantable medical devices.
    Maleki H; Gharehaghaji AA; Toliyat T; Dijkstra PJ
    Biofabrication; 2016 Sep; 8(3):035019. PubMed ID: 27634914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns.
    Maleki H; Gharehaghaji AA; Moroni L; Dijkstra PJ
    Biofabrication; 2013 Sep; 5(3):035014. PubMed ID: 23945472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Power of Fiber Twist.
    Zhou X; Fang S; Leng X; Liu Z; Baughman RH
    Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning Mechanism of Nanofiber Yarn and Its Multiscale Wrapping Yarn.
    Yan T; Shi Y; Zhuang H; Lin Y; Lu D; Cao S; Zhu L
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cold drawing on mechanical properties of biodegradable fibers.
    La Mantia FP; Ceraulo M; Mistretta MC; Morreale M
    J Appl Biomater Funct Mater; 2017 Jan; 15(1):e70-e76. PubMed ID: 27716870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension-induced twist of twist-spun carbon nanotube yarns and its effect on their torsional behavior.
    Jeon SY; Kwon D; Yu WR
    Sci Rep; 2018 Apr; 8(1):6146. PubMed ID: 29670186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns.
    Chawla S; Naraghi M; Davoudi A
    Nanotechnology; 2013 Jun; 24(25):255708. PubMed ID: 23727878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: preparation and characterization.
    Barani H
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():50-7. PubMed ID: 25175187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the effect of cotton-tencel (50:50) siro yarn twist multipliers on fabric stiffness.
    Afroz F; Rashid MM; Islam MM; Akter S
    Heliyon; 2022 Dec; 8(12):e12498. PubMed ID: 36590536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twist-Controlled Force Amplification and Spinning Tension Transition in Yarn.
    Seguin A; Crassous J
    Phys Rev Lett; 2022 Feb; 128(7):078002. PubMed ID: 35244412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes.
    Ribeiro C; Sencadas V; Costa CM; Gómez Ribelles JL; Lanceros-Méndez S
    Sci Technol Adv Mater; 2011 Feb; 12(1):015001. PubMed ID: 27877378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous High-Aligned Polyacrylonitrile Electrospun Nanofibers Yarns via Circular Deposition on Water Bath.
    Bin Y; Hao Y; Zhu M; Wang H
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5633-8. PubMed ID: 27427608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Carbon Nanotubes Concentration on Mechanical and Electrical Properties of Poly(styrene-co-acrylonitrile) Composite Yarns Electrospun.
    Caro-Briones R; García-Pérez BE; Martín-Martínez ES; Báez-Medina H; Cruz-Reyes IG; Del Río JM; Martínez-Gutiérrez H; Corea M
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.