These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Leveraging enzyme structure-function relationships for functional inference and experimental design: the structure-function linkage database. Pegg SC; Brown SD; Ojha S; Seffernick J; Meng EC; Morris JH; Chang PJ; Huang CC; Ferrin TE; Babbitt PC Biochemistry; 2006 Feb; 45(8):2545-55. PubMed ID: 16489747 [TBL] [Abstract][Full Text] [Related]
4. Using the structure-function linkage database to characterize functional domains in enzymes. Brown S; Babbitt P Curr Protoc Bioinformatics; 2014 Dec; 48():2.10.1-2.10.16. PubMed ID: 25501940 [TBL] [Abstract][Full Text] [Related]
5. Representing structure-function relationships in mechanistically diverse enzyme superfamilies. Pegg SC; Brown S; Ojha S; Huang CC; Ferrin TE; Babbitt PC Pac Symp Biocomput; 2005; ():358-69. PubMed ID: 15759641 [TBL] [Abstract][Full Text] [Related]
6. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function. Holliday GL; Brown SD; Mischel D; Polacco BJ; Babbitt PC Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32449511 [TBL] [Abstract][Full Text] [Related]
7. Using the Structure-function Linkage Database to characterize functional domains in enzymes. Brown S; Babbitt P Curr Protoc Bioinformatics; 2006 Mar; Chapter 2():Unit 2.10. PubMed ID: 18428763 [TBL] [Abstract][Full Text] [Related]
8. Evaluating Functional Annotations of Enzymes Using the Gene Ontology. Holliday GL; Davidson R; Akiva E; Babbitt PC Methods Mol Biol; 2017; 1446():111-132. PubMed ID: 27812939 [TBL] [Abstract][Full Text] [Related]
9. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. Mashiyama ST; Malabanan MM; Akiva E; Bhosle R; Branch MC; Hillerich B; Jagessar K; Kim J; Patskovsky Y; Seidel RD; Stead M; Toro R; Vetting MW; Almo SC; Armstrong RN; Babbitt PC PLoS Biol; 2014 Apr; 12(4):e1001843. PubMed ID: 24756107 [TBL] [Abstract][Full Text] [Related]
10. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies. Chiang RA; Sali A; Babbitt PC PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595 [TBL] [Abstract][Full Text] [Related]
11. Evolution of function in protein superfamilies, from a structural perspective. Todd AE; Orengo CA; Thornton JM J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560 [TBL] [Abstract][Full Text] [Related]
12. A gold standard set of mechanistically diverse enzyme superfamilies. Brown SD; Gerlt JA; Seffernick JL; Babbitt PC Genome Biol; 2006; 7(1):R8. PubMed ID: 16507141 [TBL] [Abstract][Full Text] [Related]
13. Enzyme informatics. Alderson RG; De Ferrari L; Mavridis L; McDonagh JL; Mitchell JB; Nath N Curr Top Med Chem; 2012; 12(17):1911-23. PubMed ID: 23116471 [TBL] [Abstract][Full Text] [Related]
14. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Leuthaeuser JB; Knutson ST; Kumar K; Babbitt PC; Fetrow JS Protein Sci; 2015 Sep; 24(9):1423-39. PubMed ID: 26073648 [TBL] [Abstract][Full Text] [Related]
15. PASS2.7: a database containing structure-based sequence alignments and associated features of protein domain superfamilies from SCOPe. Bhattacharyya T; Nayak S; Goswami S; Gadiyaram V; Mathew OK; Sowdhamini R Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35411388 [TBL] [Abstract][Full Text] [Related]
16. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes. Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317 [TBL] [Abstract][Full Text] [Related]
17. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective. Mudgal R; Srinivasan N; Chandra N Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236 [TBL] [Abstract][Full Text] [Related]
18. The CATH Dictionary of Homologous Superfamilies (DHS): a consensus approach for identifying distant structural homologues. Bray JE; Todd AE; Pearl FM; Thornton JM; Orengo CA Protein Eng; 2000 Mar; 13(3):153-65. PubMed ID: 10775657 [TBL] [Abstract][Full Text] [Related]
19. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain. Holliday GL; Akiva E; Meng EC; Brown SD; Calhoun S; Pieper U; Sali A; Booker SJ; Babbitt PC Methods Enzymol; 2018; 606():1-71. PubMed ID: 30097089 [TBL] [Abstract][Full Text] [Related]
20. From sequence to enzyme mechanism using multi-label machine learning. De Ferrari L; Mitchell JB BMC Bioinformatics; 2014 May; 15():150. PubMed ID: 24885296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]