These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28365855)

  • 21. Improved production of carotenoid-free welan gum in a genetic-engineered Alcaligenes sp. ATCC31555.
    Zhang W; Chen Z; Wu M; Shi Z; Zhu F; Li G; Ma T
    Biotechnol Lett; 2016 Jun; 38(6):991-7. PubMed ID: 26932903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of different nitrogen sources on the viscosity and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555.
    Xu X; Nie Z; Zheng Z; Zhu L; Zhan X
    J Texture Stud; 2020 Aug; 51(4):642-649. PubMed ID: 32112657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pie waste - A component of food waste and a renewable substrate for producing ethanol.
    Magyar M; da Costa Sousa L; Jayanthi S; Balan V
    Waste Manag; 2017 Apr; 62():247-254. PubMed ID: 28223079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A strategy for the synthesis of low-molecular-weight welan gum by eliminating capsule form of Sphingomonas strains.
    Zhao M; Zhang H; Xu X; Li S; Xu H
    Int J Biol Macromol; 2021 May; 178():11-18. PubMed ID: 33636257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production.
    Cekmecelioglu D; Uncu ON
    Waste Manag; 2013 Mar; 33(3):735-9. PubMed ID: 22959156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycerol-driven adaptive evolution for the production of low-molecular-weight Welan gum: Characterization and activity evaluation.
    Wang Y; Gao M; Zhu S; Li Z; Zhang T; Jiang Y; Zhu L; Zhan X
    Carbohydr Polym; 2024 Sep; 339():122292. PubMed ID: 38823937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Guerra NP; Pastrana L
    J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.
    Yan D; Lu Y; Chen YF; Wu Q
    Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.
    Han W; Ye M; Zhu AJ; Zhao HT; Li YF
    Bioresour Technol; 2015 Sep; 191():24-9. PubMed ID: 25978853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic hydrolysis of plant polysaccharides: substrates for fermentation.
    Dekker RF
    Braz J Med Biol Res; 1989; 22(12):1441-56. PubMed ID: 2701426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical experimental design optimization of rhamsan gum production by Sphingomonas sp. CGMCC 6833.
    Xu XY; Dong SH; Li S; Chen XY; Wu D; Xu H
    J Microbiol; 2015 Apr; 53(4):272-8. PubMed ID: 25845540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient biosynthesis of polysaccharide welan gum in heat shock protein-overproducing Sphingomonas sp. via temperature-dependent strategy.
    Zhu P; Zhan Y; Wang C; Liu X; Liu L; Xu H
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):247-257. PubMed ID: 32944865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium.
    Wang X; Xu P; Yuan Y; Liu C; Zhang D; Yang Z; Yang C; Ma C
    Appl Environ Microbiol; 2006 May; 72(5):3367-74. PubMed ID: 16672479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Fuciños P; Guerra NP; Pastrana L
    J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of rhamsan gum using a two-stage pH control strategy by Sphingomonas sp. CGMCC 6833.
    Ying XX; Ping Z; Sha L; Ye CX; Zhong Y; Hong X
    Appl Biochem Biotechnol; 2014 Jan; 172(1):168-75. PubMed ID: 24057303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and Function of a Novel Welan Gum Lyase From Marine
    Chang AP; Qian J; Li H; Wang YL; Lin JY; He QM; Shen YL; Zhu H
    Front Microbiol; 2021; 12():638355. PubMed ID: 33633718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR analysis of the side-group substituents in welan gum in comparison to gellan gum.
    Cai Z; Guo Y; Ma A; Zhang H
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127847. PubMed ID: 37924910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Welan gum: microbial production, characterization, and applications.
    Kaur V; Bera MB; Panesar PS; Kumar H; Kennedy JF
    Int J Biol Macromol; 2014 Apr; 65():454-61. PubMed ID: 24508918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste.
    Kumar G; Sen B; Lin CY
    Bioresour Technol; 2013 Oct; 145():275-9. PubMed ID: 23562180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.