BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 28365867)

  • 1. Inactivation of the Tuberomammillary Nucleus by GABA
    Xie JF; Fan K; Wang C; Xie P; Hou M; Xin L; Cui GF; Wang LX; Shao YF; Hou YP
    Neurochem Res; 2017 Aug; 42(8):2314-2325. PubMed ID: 28365867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats.
    Gerashchenko D; Chou TC; Blanco-Centurion CA; Saper CB; Shiromani PJ
    Sleep; 2004 Nov; 27(7):1275-81. PubMed ID: 15586780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal.
    Williams RH; Chee MJ; Kroeger D; Ferrari LL; Maratos-Flier E; Scammell TE; Arrigoni E
    J Neurosci; 2014 Apr; 34(17):6023-9. PubMed ID: 24760861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate Activates the Histaminergic Tuberomammillary Nucleus and Increases Wakefulness in Rats.
    Yin D; Dong H; Wang TX; Hu ZZ; Cheng NN; Qu WM; Huang ZL
    Neuroscience; 2019 Aug; 413():86-98. PubMed ID: 31202706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.
    Schwartz MD; Nguyen AT; Warrier DR; Palmerston JB; Thomas AM; Morairty SR; Neylan TC; Kilduff TS
    eNeuro; 2016; 3(2):. PubMed ID: 27022631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of propofol on sleep architecture and sleep-wake systems in rats.
    Yue XF; Wang AZ; Hou YP; Fan K
    Behav Brain Res; 2021 Aug; 411():113380. PubMed ID: 34033853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interaction Between the Ventrolateral Preoptic Nucleus and the Tuberomammillary Nucleus in Regulating the Sleep-Wakefulness Cycle.
    Cheng J; Wu F; Zhang M; Ding D; Fan S; Chen G; Zhang J; Wang L
    Front Neurosci; 2020; 14():615854. PubMed ID: 33381012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness.
    Zecharia AY; Yu X; Götz T; Ye Z; Carr DR; Wulff P; Bettler B; Vyssotski AL; Brickley SG; Franks NP; Wisden W
    J Neurosci; 2012 Sep; 32(38):13062-75. PubMed ID: 22993424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.
    Fujita A; Bonnavion P; Wilson MH; Mickelsen LE; Bloit J; de Lecea L; Jackson AC
    J Neurosci; 2017 Sep; 37(39):9574-9592. PubMed ID: 28874450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.
    Cerri M; Del Vecchio F; Mastrotto M; Luppi M; Martelli D; Perez E; Tupone D; Zamboni G; Amici R
    PLoS One; 2014; 9(11):e112849. PubMed ID: 25398141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide S promotes wakefulness through activation of the posterior hypothalamic histaminergic and orexinergic neurons.
    Zhao P; Shao YF; Zhang M; Fan K; Kong XP; Wang R; Hou YP
    Neuroscience; 2012 Apr; 207():218-26. PubMed ID: 22300983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.
    Vanini G; Baghdoyan HA
    Sleep; 2013 Mar; 36(3):337-43. PubMed ID: 23450652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arousal effect of orexin A depends on activation of the histaminergic system.
    Huang ZL; Qu WM; Li WD; Mochizuki T; Eguchi N; Watanabe T; Urade Y; Hayaishi O
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9965-70. PubMed ID: 11493714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control.
    Venner A; Mochizuki T; De Luca R; Anaclet C; Scammell TE; Saper CB; Arrigoni E; Fuller PM
    J Neurosci; 2019 Nov; 39(45):8929-8939. PubMed ID: 31548232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats.
    Hong ZY; Huang ZL; Qu WM; Eguchi N; Urade Y; Hayaishi O
    J Neurochem; 2005 Mar; 92(6):1542-9. PubMed ID: 15748171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of the Ventral Pallidum by GABA
    Zhang X; Liu Y; Yang B; Xu H
    Neurochem Res; 2020 Aug; 45(8):1791-1801. PubMed ID: 32367385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway.
    Nelson LE; Guo TZ; Lu J; Saper CB; Franks NP; Maze M
    Nat Neurosci; 2002 Oct; 5(10):979-84. PubMed ID: 12195434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.
    Flint RR; Chang T; Lydic R; Baghdoyan HA
    J Neurosci; 2010 Sep; 30(37):12301-9. PubMed ID: 20844126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wake-related activity of tuberomammillary neurons in rats.
    Ko EM; Estabrooke IV; McCarthy M; Scammell TE
    Brain Res; 2003 Dec; 992(2):220-6. PubMed ID: 14625060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advances in the study of histaminergic systems and sleep-wake regulation].
    Liu TY; Hong ZY; Qu WM; Huang ZL
    Yao Xue Xue Bao; 2011 Mar; 46(3):247-52. PubMed ID: 21626776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.