BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28366454)

  • 1. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration.
    Wilk K; Yeh SA; Mortensen LJ; Ghaffarigarakani S; Lombardo CM; Bassir SH; Aldawood ZA; Lin CP; Intini G
    Stem Cell Reports; 2017 Apr; 8(4):933-946. PubMed ID: 28366454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prx1 Expressing Cells Are Required for Periodontal Regeneration of the Mouse Incisor.
    Bassir SH; Garakani S; Wilk K; Aldawood ZA; Hou J; Yeh SA; Sfeir C; Lin CP; Intini G
    Front Physiol; 2019; 10():591. PubMed ID: 31231227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration.
    Aldawood ZA; Mancinelli L; Geng X; Yeh SA; Di Carlo R; C Leite T; Gustafson J; Wilk K; Yozgatian J; Garakani S; Bassir SH; Cunningham ML; Lin CP; Intini G
    Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2120826120. PubMed ID: 37040407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues.
    Bragdon BC; Bennie A; Molinelli A; Liu Y; Gerstenfeld LC
    J Cell Physiol; 2022 May; 237(5):2550-2560. PubMed ID: 35338481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury.
    Park S; Zhao H; Urata M; Chai Y
    Stem Cells Dev; 2016 Dec; 25(23):1801-1807. PubMed ID: 27762665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periosteum progenitors could stimulate bone regeneration in aged murine bone defect model.
    Xiao H; Wang L; Zhang T; Chen C; Chen H; Li S; Hu J; Lu H
    J Cell Mol Med; 2020 Oct; 24(20):12199-12210. PubMed ID: 32931157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.
    Maruyama T
    Keio J Med; 2019; 68(2):42. PubMed ID: 31243185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.
    Maruyama T; Jeong J; Sheu TJ; Hsu W
    Nat Commun; 2016 Feb; 7():10526. PubMed ID: 26830436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice.
    Xiao L; Ueno D; Catros S; Homer-Bouthiette C; Charles L; Kuhn L; Hurley MM
    Endocrinology; 2014 Mar; 155(3):965-74. PubMed ID: 24424065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell fate specification during calvarial bone and suture development.
    Lana-Elola E; Rice R; Grigoriadis AE; Rice DP
    Dev Biol; 2007 Nov; 311(2):335-46. PubMed ID: 17931618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model.
    Gao X; Usas A; Lu A; Tang Y; Wang B; Chen CW; Li H; Tebbets JC; Cummins JH; Huard J
    Cell Transplant; 2013; 22(12):2393-408. PubMed ID: 23244588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria.
    Steenhuis P; Pettway GJ; Ignelzi MA
    Calcif Tissue Int; 2008 Jan; 82(1):44-56. PubMed ID: 18175035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling.
    Sun C; Yuan H; Wang L; Wei X; Williams L; Krebsbach PH; Guan JL; Liu F
    J Bone Miner Res; 2016 Dec; 31(12):2227-2238. PubMed ID: 27391080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
    Leucht P; Kim JB; Amasha R; James AW; Girod S; Helms JA
    Development; 2008 Sep; 135(17):2845-54. PubMed ID: 18653558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptosis in murine calvarial bone and suture development.
    Rice DP; Kim HJ; Thesleff I
    Eur J Oral Sci; 1999 Aug; 107(4):265-75. PubMed ID: 10467942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine.
    Cao Y; Xiong J; Mei S; Wang F; Zhao Z; Wang S; Liu Y
    Stem Cell Res Ther; 2015 Oct; 6():210. PubMed ID: 26519141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis.
    Mirando AJ; Maruyama T; Fu J; Yu HM; Hsu W
    BMC Dev Biol; 2010 Nov; 10():116. PubMed ID: 21108844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cranial suture lineage and contributions to repair of the mouse skull.
    Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ
    Development; 2024 Feb; 151(3):. PubMed ID: 38345329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nell-1-induced bone regeneration in calvarial defects.
    Aghaloo T; Cowan CM; Chou YF; Zhang X; Lee H; Miao S; Hong N; Kuroda S; Wu B; Ting K; Soo C
    Am J Pathol; 2006 Sep; 169(3):903-15. PubMed ID: 16936265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.