BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28366864)

  • 1. Dopamine dependent setting of a circadian oscillator underlying the memory for time of day.
    Cain SW; Rawashdeh OA; Siu M; Kim SC; Ralph MR
    Neurobiol Learn Mem; 2017 May; 141():78-83. PubMed ID: 28366864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of haloperidol and d-amphetamine on working and reference memory performance in a spatial cone field task.
    Blokland A; Honig W; Prickaerts J
    Behav Pharmacol; 1998 Sep; 9(5-6):429-36. PubMed ID: 9832928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory for time of day (time memory) is encoded by a circadian oscillator and is distinct from other context memories.
    Ralph MR; Sam K; Rawashdeh OA; Cain SW; Ko CH
    Chronobiol Int; 2013 May; 30(4):540-7. PubMed ID: 23428333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a role of D1 dopamine receptors in d-amphetamine's effect on timing behaviour in the free-operant psychophysical procedure.
    Cheung TH; Bezzina G; Asgari K; Body S; Fone KC; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 2006 Apr; 185(3):378-88. PubMed ID: 16538470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of d-amphetamine-induced changes in glutamate, ascorbic acid and uric acid release in the striatum of freely moving rats.
    Miele M; Mura MA; Enrico P; Esposito G; Serra PA; Migheli R; Zangani D; Miele E; Desole MS
    Br J Pharmacol; 2000 Feb; 129(3):582-8. PubMed ID: 10711358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clozapine blocks D-amphetamine-induced excitation of dopamine neurons in the ventral tegmental area.
    Shi WX; Zhang XY; Pun CL; Bunney BS
    Neuropsychopharmacology; 2007 Sep; 32(9):1922-8. PubMed ID: 17299514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the sensitivity of operant timing behaviour to stimulation of D1 dopamine receptors.
    Cheung TH; Bezzina G; Hampson CL; Body S; Fone KC; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 2007 Dec; 195(2):213-22. PubMed ID: 17668188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of rate-dependency and internal clock effects of D-amphetamine.
    Orduña V; García A; Bouzas A
    Behav Processes; 2012 Jul; 90(3):428-32. PubMed ID: 22542957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian modulation of conditioned place avoidance in hamsters does not require the suprachiasmatic nucleus.
    Cain SW; Ralph MR
    Neurobiol Learn Mem; 2009 Jan; 91(1):81-4. PubMed ID: 19013252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian modulation of performance on an aversion-based place learning task in hamsters.
    Cain SW; Chou T; Ralph MR
    Behav Brain Res; 2004 Apr; 150(1-2):201-5. PubMed ID: 15033293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of avoidance responding by amphetamine and dopamine receptor antagonists.
    Jakubowska-Doğru E
    Pol J Pharmacol; 1999; 51(4):301-9. PubMed ID: 10540961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment in consolidation of learned place preference following dopaminergic neurotoxicity in mice is ameliorated by N-acetylcysteine but not D1 and D2 dopamine receptor agonists.
    Achat-Mendes C; Anderson KL; Itzhak Y
    Neuropsychopharmacology; 2007 Mar; 32(3):531-41. PubMed ID: 16760923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum.
    Pehek EA
    J Pharmacol Exp Ther; 1999 Apr; 289(1):14-23. PubMed ID: 10086982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological manipulations of food protection behavior in rats: evidence for dopaminergic contributions to time perception during a natural behavior.
    Wallace DG; Wallace PS; Field E; Whishaw IQ
    Brain Res; 2006 Sep; 1112(1):213-21. PubMed ID: 16890923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat.
    Venton BJ; Wightman RM
    Synapse; 2007 Jan; 61(1):37-9. PubMed ID: 17068772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine manipulations limited to preexposure are sufficient to modulate latent inhibition.
    Bethus I; Muscat R; Goodall G
    Behav Neurosci; 2006 Jun; 120(3):554-62. PubMed ID: 16768607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fentanyl, but not haloperidol, entrains persisting circadian activity episodes when administered at 24- and 31-h intervals.
    Gillman AG; Leffel JK; Kosobud AE; Timberlake W
    Behav Brain Res; 2009 Dec; 205(1):102-14. PubMed ID: 19595707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily biorhythmicity influences, homing behavior, psychopharmacological responsiveness, learning, and retention of suckling rats.
    Infurna RN
    J Comp Physiol Psychol; 1981 Dec; 95(6):896-914. PubMed ID: 7320280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.
    Lubinski AJ; Page TL
    J Biol Rhythms; 2016 Apr; 31(2):161-9. PubMed ID: 26714872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor gating effects produced by repeated dopamine agonists in a paradigm favoring environmental conditioning.
    Feifel D; Priebe K; Johnstone-Miller E; Morgan CJ
    Psychopharmacology (Berl); 2002 Jul; 162(2):138-46. PubMed ID: 12110991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.