These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
856 related articles for article (PubMed ID: 28366879)
1. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. Bernardo L; Morcia C; Carletti P; Ghizzoni R; Badeck FW; Rizza F; Lucini L; Terzi V J Proteomics; 2017 Oct; 169():21-32. PubMed ID: 28366879 [TBL] [Abstract][Full Text] [Related]
2. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Bernardo L; Carletti P; Badeck FW; Rizza F; Morcia C; Ghizzoni R; Rouphael Y; Colla G; Terzi V; Lucini L Plant Physiol Biochem; 2019 Apr; 137():203-212. PubMed ID: 30802803 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. Fileccia V; Ruisi P; Ingraffia R; Giambalvo D; Frenda AS; Martinelli F PLoS One; 2017; 12(9):e0184158. PubMed ID: 28877207 [TBL] [Abstract][Full Text] [Related]
4. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
5. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Singh AK; Hamel C; Depauw RM; Knox RE Can J Microbiol; 2012 Mar; 58(3):293-302. PubMed ID: 22356605 [TBL] [Abstract][Full Text] [Related]
6. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Al-Karaki G; McMichael B; Zak J Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358 [TBL] [Abstract][Full Text] [Related]
7. Potential to breed for mycorrhizal association in durum wheat. Ellouze W; Hamel C; DePauw RM; Knox RE; Cuthbert RD; Singh AK Can J Microbiol; 2016 Mar; 62(3):263-71. PubMed ID: 26825726 [TBL] [Abstract][Full Text] [Related]
8. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. Ingraffia R; Amato G; Frenda AS; Giambalvo D PLoS One; 2019; 14(3):e0213672. PubMed ID: 30856237 [TBL] [Abstract][Full Text] [Related]
9. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions. Saia S; Ruisi P; Fileccia V; Di Miceli G; Amato G; Martinelli F PLoS One; 2015; 10(6):e0129591. PubMed ID: 26067663 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Puccio G; Ingraffia R; Mercati F; Amato G; Giambalvo D; Martinelli F; Sunseri F; Frenda AS Sci Rep; 2023 Jan; 13(1):116. PubMed ID: 36596823 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers. Della Mónica IF; Godeas AM; Scervino JM Microb Ecol; 2020 Jan; 79(1):21-29. PubMed ID: 31218384 [TBL] [Abstract][Full Text] [Related]
13. Identification of microRNAS differentially regulated by water deficit in relation to mycorrhizal treatment in wheat. Fileccia V; Ingraffia R; Amato G; Giambalvo D; Martinelli F Mol Biol Rep; 2019 Oct; 46(5):5163-5174. PubMed ID: 31327121 [TBL] [Abstract][Full Text] [Related]
14. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mustafa G; Randoux B; Tisserant B; Fontaine J; Magnin-Robert M; Lounès-Hadj Sahraoui A; Reignault P Mycorrhiza; 2016 Oct; 26(7):685-97. PubMed ID: 27130314 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant growth-promoting bacteria modulates growth and defense in wheat. Vannini C; Domingo G; Fiorilli V; Seco DG; Novero M; Marsoni M; Wisniewski-Dye F; Bracale M; Moulin L; Bonfante P Plant Cell Environ; 2021 Jun; 44(6):1946-1960. PubMed ID: 33675052 [TBL] [Abstract][Full Text] [Related]
16. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Salloum MS; Guzzo MC; Velazquez MS; Sagadin MB; Luna CM Can J Microbiol; 2016 Dec; 62(12):1034-1040. PubMed ID: 27784163 [TBL] [Abstract][Full Text] [Related]
17. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. Bahadur A; Batool A; Nasir F; Jiang S; Mingsen Q; Zhang Q; Pan J; Liu Y; Feng H Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31461957 [TBL] [Abstract][Full Text] [Related]
19. Density- and moisture-dependent effects of arbuscular mycorrhizal fungus on drought acclimation in wheat. Duan HX; Luo CL; Zhu SY; Wang W; Naseer M; Xiong YC Ecol Appl; 2021 Dec; 31(8):e02444. PubMed ID: 34448278 [TBL] [Abstract][Full Text] [Related]
20. Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Naseer M; Zhu Y; Li FM; Yang YM; Wang S; Xiong YC Environ Pollut; 2022 Feb; 295():118724. PubMed ID: 34942289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]