These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28367121)

  • 1. Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks.
    Ruiz Garate V; Parri A; Yan T; Munih M; Molino Lova R; Vitiello N; Ronsse R
    Front Neurorobot; 2017; 11():15. PubMed ID: 28367121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a powered ankle-foot orthosis on perturbed standing balance.
    Emmens AR; van Asseldonk EHF; van der Kooij H
    J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons.
    Nunes PF; Ostan I; Siqueira AAG
    Front Robot AI; 2020; 7():575217. PubMed ID: 33501336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Inspired Balance Control Assistance Can Reduce Metabolic Energy Consumption in Human Walking.
    Zhao G; Ahmad Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1760-1769. PubMed ID: 31403431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons.
    Moreira L; Figueiredo J; Cerqueira J; Santos CP
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.
    Sartori M; Gizzi L; Lloyd DG; Farina D
    Front Comput Neurosci; 2013; 7():79. PubMed ID: 23805099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.
    Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N
    Front Neurosci; 2018; 12():71. PubMed ID: 29491830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Phase-Invariant Linear Torque-Angle-Velocity Relation Hidden in Human Walking Data.
    Altinkaynak ES; Braun DJ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):702-711. PubMed ID: 30794187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.