These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28367256)

  • 1. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.
    Shi R; Guo Y
    Ann Appl Stat; 2016 Dec; 10(4):1930-1957. PubMed ID: 28367256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical independent component analysis model for longitudinal neuroimaging studies.
    Wang Y; Guo Y
    Neuroimage; 2019 Apr; 189():380-400. PubMed ID: 30639837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data.
    Lukemire J; Wang Y; Verma A; Guo Y
    J Neurosci Methods; 2020 Jul; 341():108726. PubMed ID: 32360892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks.
    Lukemire J; Pagnoni G; Guo Y
    Biometrics; 2023 Dec; 79(4):3599-3611. PubMed ID: 37036246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks using Big Data Population Priors.
    Mejia AF; Nebel MB; Wang Y; Caffo BS; Guo Y
    J Am Stat Assoc; 2020; 115(531):1151-1177. PubMed ID: 33060872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template independent component analysis with spatial priors for accurate subject-level brain network estimation and inference.
    Mejia AF; Bolin D; Yue YR; Wang J; Caffo BS; Nebel MB
    J Comput Graph Stat; 2023; 32(2):413-433. PubMed ID: 37377728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A group model for stable multi-subject ICA on fMRI datasets.
    Varoquaux G; Sadaghiani S; Pinel P; Kleinschmidt A; Poline JB; Thirion B
    Neuroimage; 2010 May; 51(1):288-99. PubMed ID: 20153834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Sample Group Independent Component Analysis of Functional Magnetic Resonance Imaging Using Anatomical Atlas-Based Reduction and Bootstrapped Clustering.
    Anderson A; Bramen J; Douglas PK; Lenartowicz A; Cho A; Culbertson C; Brody AL; Yuille AL; Cohen MS
    Int J Imaging Syst Technol; 2011 Jun; 21(2):223-231. PubMed ID: 22049263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.
    Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ
    Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group ICA for identifying biomarkers in schizophrenia: 'Adaptive' networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression.
    Salman MS; Du Y; Lin D; Fu Z; Fedorov A; Damaraju E; Sui J; Chen J; Mayer AR; Posse S; Mathalon DH; Ford JM; Van Erp T; Calhoun VD
    Neuroimage Clin; 2019; 22():101747. PubMed ID: 30921608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment.
    Bi XA; Sun Q; Zhao J; Xu Q; Wang L
    Front Neurosci; 2018; 12():413. PubMed ID: 29970984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying functional connectivity in multi-subject fMRI data using component models.
    Madsen KH; Churchill NW; Mørup M
    Hum Brain Mapp; 2017 Feb; 38(2):882-899. PubMed ID: 27739635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU-based parallel group ICA for functional magnetic resonance data.
    Jing Y; Zeng W; Wang N; Ren T; Shi Y; Yin J; Xu Q
    Comput Methods Programs Biomed; 2015 Apr; 119(1):9-16. PubMed ID: 25704870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data.
    Li S; Chen S; Yue C; Caffo B
    Front Neurosci; 2016; 10():15. PubMed ID: 26858592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.