These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28367372)

  • 1. Disturbed flow in an aquatic environment may create a sensory refuge for aggregated prey.
    Johannesen A; Dunn AM; Morrell LJ
    PeerJ; 2017; 5():e3121. PubMed ID: 28367372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negotiating a noisy, information-rich environment in search of cryptic prey: olfactory predators need patchiness in prey cues.
    Carthey AJ; Bytheway JP; Banks PB
    J Anim Ecol; 2011 Jul; 80(4):742-52. PubMed ID: 21401592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prey aggregation is an effective olfactory predator avoidance strategy.
    Johannesen A; Dunn AM; Morrell LJ
    PeerJ; 2014; 2():e408. PubMed ID: 24918032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smell or vision? The use of different sensory modalities in predator discrimination.
    Fischer S; Oberhummer E; Cunha-Saraiva F; Gerber N; Taborsky B
    Behav Ecol Sociobiol; 2017; 71(10):143. PubMed ID: 28989227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance cues function as a background risk cue but not as an associative learning cue in tadpoles.
    Rivera-Hernández IAE; Crane AL; Pollock MS; Ferrari MCO
    Anim Cogn; 2022 Aug; 25(4):881-889. PubMed ID: 35099624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling the effects of predation and disturbance in a patchy environment.
    Lancaster J
    Oecologia; 1996 Aug; 107(3):321-331. PubMed ID: 28307260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator olfactory cues generate a foraging-predation trade-off through prey apprehension.
    Siepielski AM; Fallon E; Boersma K
    R Soc Open Sci; 2016 Feb; 3(2):150537. PubMed ID: 26998324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. --Effect of multimodal cues from a predatory fish on refuge use and foraging on an amphidromous shrimp.
    Ocasio-Torres ME; Crowl TA; Sabat AM
    PeerJ; 2021; 9():e11011. PubMed ID: 33763304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.
    Robinson HE; Finelli CM; Koehl MA
    Integr Comp Biol; 2013 Nov; 53(5):810-20. PubMed ID: 23942646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators.
    Martin CW; Fodrie FJ; Heck KL; Mattila J
    Oecologia; 2010 Apr; 162(4):893-902. PubMed ID: 20127367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoaling behaviour enhances risk of predation from multiple predator guilds in a marine fish.
    Ford JR; Swearer SE
    Oecologia; 2013 Jun; 172(2):387-97. PubMed ID: 23124272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic sensory stressors produce nonlinear predation patterns.
    Smee DL; Ferner MC; Weissburg MJ
    Ecology; 2010 May; 91(5):1391-400. PubMed ID: 20503871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invasive mammalian predators habituate to and generalize avian prey cues: a mechanism for conserving native prey.
    Price CJ; Banks PB; Brown S; Latham MC; Latham ADM; Pech RP; Norbury GL
    Ecol Appl; 2020 Dec; 30(8):e02200. PubMed ID: 32573866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damsel in distress: captured damselfish prey emit chemical cues that attract secondary predators and improve escape chances.
    Lönnstedt OM; McCormick MI
    Proc Biol Sci; 2015 Nov; 282(1818):20152038. PubMed ID: 26511043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?
    Duffield C; Ioannou CC
    Behav Ecol; 2017; 28(5):1283-1292. PubMed ID: 29622928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predator cue and prey density interactively influence indirect effects on basal resources in intertidal oyster reefs.
    Hughes AR; Rooker K; Murdock M; Kimbro DL
    PLoS One; 2012; 7(9):e44839. PubMed ID: 22970316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae.
    Hossie TJ; Murray DL
    Oecologia; 2010 Jun; 163(2):395-404. PubMed ID: 20130916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbidity interferes with foraging success of visual but not chemosensory predators.
    Lunt J; Smee DL
    PeerJ; 2015; 3():e1212. PubMed ID: 26401444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fire as a driver and mediator of predator-prey interactions.
    Doherty TS; Geary WL; Jolly CJ; Macdonald KJ; Miritis V; Watchorn DJ; Cherry MJ; Conner LM; González TM; Legge SM; Ritchie EG; Stawski C; Dickman CR
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1539-1558. PubMed ID: 35320881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.