These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 2836747)
1. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Fischman AJ; Kastin AJ; Graf MV; Moldow RL Neuroendocrinology; 1988 Apr; 47(4):309-16. PubMed ID: 2836747 [TBL] [Abstract][Full Text] [Related]
2. Circadian variation in response to CRF-41 and AVP. Graf M; Fischman AJ; Kastin AJ; Moldow RL Am J Physiol; 1988 Sep; 255(3 Pt 1):E265-71. PubMed ID: 2844097 [TBL] [Abstract][Full Text] [Related]
3. Hypothalamic luteinizing hormone releasing factor and corticotrophin releasing activity in relation to pituitary and plasma hormone levels in male and female rats. Chiappa SA; Fink G J Endocrinol; 1977 Feb; 72(2):195-210. PubMed ID: 191558 [TBL] [Abstract][Full Text] [Related]
4. The hypothalamic-pituitary-adrenal axis in rat pregnancy and lactation: circadian variation and interrelationship of plasma adrenocorticotropin and corticosterone. Atkinson HC; Waddell BJ Endocrinology; 1995 Feb; 136(2):512-20. PubMed ID: 7835284 [TBL] [Abstract][Full Text] [Related]
5. Circadian rhythm of corticotropin releasing factor-like immunoreactivity in rat hypothalamus. Moldow RL; Fischman AJ Peptides; 1984; 5(6):1213-5. PubMed ID: 6335753 [TBL] [Abstract][Full Text] [Related]
6. Effects of benzodiazepine agonist exposure on corticotropin-releasing factor content and hormonal stress responses: divergent responses in male and ovariectomized female rats. Wilson MA; Biscardi R; Smith MD; Wilson SP J Pharmacol Exp Ther; 1996 Sep; 278(3):1073-82. PubMed ID: 8819488 [TBL] [Abstract][Full Text] [Related]
7. The effect of urocortin I on the hypothalamic ACTH secretagogues and its impact on the hypothalamic-pituitary-adrenal axis. Bagosi Z; Csabafi K; Palotai M; Jászberényi M; Földesi I; Gardi J; Szabó G; Telegdy G Neuropeptides; 2014 Feb; 48(1):15-20. PubMed ID: 24331779 [TBL] [Abstract][Full Text] [Related]
8. Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Zorrilla EP; Valdez GR; Weiss F Psychopharmacology (Berl); 2001 Dec; 158(4):374-81. PubMed ID: 11797058 [TBL] [Abstract][Full Text] [Related]
9. Age-related alterations of hypothalamic-pituitary-adrenal axis function in male Fischer 344 rats. Hauger RL; Thrivikraman KV; Plotsky PM Endocrinology; 1994 Mar; 134(3):1528-36. PubMed ID: 8119195 [TBL] [Abstract][Full Text] [Related]
10. Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis. Swain MG; Patchev V; Vergalla J; Chrousos G; Jones EA J Clin Invest; 1993 May; 91(5):1903-8. PubMed ID: 8387536 [TBL] [Abstract][Full Text] [Related]
11. The site of inhibitory action of a natural (corticosterone) and synthetic steroid (dexamethasone) in the hypothalamic-pituitary-adrenal axis. Sakakura M; Yoshioka M; Kobayashi M; Takebe K Neuroendocrinology; 1981 Mar; 32(3):174-8. PubMed ID: 6261179 [TBL] [Abstract][Full Text] [Related]
12. The 5-hydroxytryptamine2 agonist, (+-)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane stimulates the hypothalamic-pituitary-adrenal (HPA) axis. II. Biochemical and physiological evidence for the development of tolerance after chronic administration. Owens MJ; Knight DL; Ritchie JC; Nemeroff CB J Pharmacol Exp Ther; 1991 Feb; 256(2):795-800. PubMed ID: 1847213 [TBL] [Abstract][Full Text] [Related]
13. Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity. van Haarst AD; Oitzl MS; Workel JO; de Kloet ER Endocrinology; 1996 Nov; 137(11):4935-43. PubMed ID: 8895366 [TBL] [Abstract][Full Text] [Related]
14. Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats. Llansola M; Ahabrach H; Errami M; Cabrera-Pastor A; Addaoudi K; Felipo V Arch Biochem Biophys; 2013 Aug; 536(2):164-70. PubMed ID: 23376587 [TBL] [Abstract][Full Text] [Related]
15. Temporal relationships between the circadian rhythmicity in plasma levels of pituitary hormones and in hypothalamic concentrations of releasing factors. Szafarczyk A; Hery M; Laplante E; Ixart G; Assenmacher I; Kordon C Neuroendocrinology; 1980 Jun; 30(6):369-76. PubMed ID: 6247669 [TBL] [Abstract][Full Text] [Related]
16. Interaction between oestrogen and oxytocin on hypothalamic-pituitary-adrenal axis activity. Ochedalski T; Subburaju S; Wynn PC; Aguilera G J Neuroendocrinol; 2007 Mar; 19(3):189-97. PubMed ID: 17280592 [TBL] [Abstract][Full Text] [Related]
17. Corticotrope response to removal of releasing factors and corticosteroids in vivo. Dallman MF; Makara GB; Roberts JL; Levin N; Blum M Endocrinology; 1985 Nov; 117(5):2190-7. PubMed ID: 2995008 [TBL] [Abstract][Full Text] [Related]
18. Diurnal corticotropin-releasing hormone mRNA variation in the hypothalamus exhibits a rhythm distinct from that of plasma corticosterone. Kwak SP; Young EA; Morano I; Watson SJ; Akil H Neuroendocrinology; 1992 Jan; 55(1):74-83. PubMed ID: 1319007 [TBL] [Abstract][Full Text] [Related]
19. Diurnal variations in responsiveness of the hypothalamo-pituitary-adrenocortical axis of the rat. Nicholson S; Lin JH; Mahmoud S; Campbell E; Gillham B; Jones M Neuroendocrinology; 1985 Mar; 40(3):217-24. PubMed ID: 2986024 [TBL] [Abstract][Full Text] [Related]
20. Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Moldow RL; Fischman AJ Peptides; 1987; 8(5):819-22. PubMed ID: 2829143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]