These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 28367550)
1. Effects of spatial topologies and electron Fermi-level gradient on the photocatalytic efficiency of nano-particulate semiconductors. Liu B; Zhang R Phys Chem Chem Phys; 2017 Apr; 19(15):10116-10124. PubMed ID: 28367550 [TBL] [Abstract][Full Text] [Related]
2. Correlation of electron transport and photocatalysis of nanocrystalline clusters studied by Monte-Carlo continuity random walking. Liu B; Li Z; Zhao X Phys Chem Chem Phys; 2015 Feb; 17(7):5265-73. PubMed ID: 25608276 [TBL] [Abstract][Full Text] [Related]
3. A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model. Liu B; Zhao X; Yu J; Fujishima A; Nakata K Phys Chem Chem Phys; 2016 Nov; 18(46):31914-31923. PubMed ID: 27844076 [TBL] [Abstract][Full Text] [Related]
4. Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics. Liu B Phys Chem Chem Phys; 2016 Apr; 18(16):11520-7. PubMed ID: 27063486 [TBL] [Abstract][Full Text] [Related]
5. The role of electron interfacial transfer in mesoporous nano-TiO Liu B; Yang J; Zhao X; Yu J Phys Chem Chem Phys; 2017 Mar; 19(13):8866-8873. PubMed ID: 28294219 [TBL] [Abstract][Full Text] [Related]
6. Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiO₂ assemblies using a continuous random walk simulation. Liu B; Zhao X Phys Chem Chem Phys; 2014 Oct; 16(40):22343-51. PubMed ID: 25224752 [TBL] [Abstract][Full Text] [Related]
7. Investigation of electron behavior in Nano-TiO2 photocatalysis by using in situ open-circuit voltage and photoconductivity measurements. Liu B; Wang X; Wen L; Zhao X Chemistry; 2013 Aug; 19(32):10751-9. PubMed ID: 23794228 [TBL] [Abstract][Full Text] [Related]
8. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Jiang J; Li H; Zhang L Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472 [TBL] [Abstract][Full Text] [Related]
9. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au). Li H; Yu H; Quan X; Chen S; Zhang Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):2111-9. PubMed ID: 26728189 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code. Chow JC; Leung MK Med Phys; 2008 Jun; 35(6):2383-90. PubMed ID: 18649471 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Liu B; Zhao X; Terashima C; Fujishima A; Nakata K Phys Chem Chem Phys; 2014 May; 16(19):8751-60. PubMed ID: 24675975 [TBL] [Abstract][Full Text] [Related]
12. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films. Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997 [TBL] [Abstract][Full Text] [Related]
13. Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Bisquert J Phys Chem Chem Phys; 2008 Jun; 10(22):3175-94. PubMed ID: 18500394 [TBL] [Abstract][Full Text] [Related]
15. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Fan W; Zhang Q; Wang Y Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026 [TBL] [Abstract][Full Text] [Related]
16. Energy-loss straggling algorithms for Monte Carlo electron transport. Chibani O Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312 [TBL] [Abstract][Full Text] [Related]
17. Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: Enhanced photo induced carriers separation efficiency and mechanism insight. Wen J; Ma C; Huo P; Liu X; Wei M; Liu Y; Yao X; Ma Z; Yan Y J Environ Sci (China); 2017 Oct; 60():98-107. PubMed ID: 29031452 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se. Fang Y; Badal A; Allec N; Karim KS; Badano A Med Phys; 2012 Jan; 39(1):308-19. PubMed ID: 22225301 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
20. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. Nemec H; Rochford J; Taratula O; Galoppini E; Kuzel P; Polívka T; Yartsev A; Sundström V Phys Rev Lett; 2010 May; 104(19):197401. PubMed ID: 20866996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]