These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. von Grafenstein L; Bock M; Ueberschaer D; Zawilski K; Schunemann P; Griebner U; Elsaesser T Opt Lett; 2017 Oct; 42(19):3796-3799. PubMed ID: 28957130 [TBL] [Abstract][Full Text] [Related]
6. Octave-spanning mid-infrared femtosecond OPA in a ZnGeP Nam SH; Fedorov V; Mirov S; Hong KH Opt Express; 2020 Oct; 28(22):32403-32414. PubMed ID: 33114927 [TBL] [Abstract][Full Text] [Related]
7. Ultrabroadband microjoule 1.8 μm laser pulse from a single-stage broadband pumped OPA. Hong Z; Rezvani SA; Zhang Q; Cao W; Lu P Opt Lett; 2018 Aug; 43(15):3706-3709. PubMed ID: 30067660 [TBL] [Abstract][Full Text] [Related]
8. Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm. Mayer BW; Phillips CR; Gallmann L; Fejer MM; Keller U Opt Lett; 2013 Nov; 38(21):4265-8. PubMed ID: 24177069 [TBL] [Abstract][Full Text] [Related]
9. Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 μm. Pelletier E; Sell A; Leitenstorfer A; Miller RJ Opt Express; 2012 Dec; 20(25):27456-64. PubMed ID: 23262695 [TBL] [Abstract][Full Text] [Related]
10. Signal-to-idler energy conversion from 1.9 to 2.3 µm by transient stimulated Raman chirped-pulse amplification. Petrulenas A; Mackonis P; Rodin AM Opt Lett; 2023 Apr; 48(7):1598-1601. PubMed ID: 37221719 [TBL] [Abstract][Full Text] [Related]
11. Fiber-amplifier-pumped, 1-MHz, 1-µJ, 2.1-µm, femtosecond OPA with chirped-pulse DFG front-end. Liu Y; Krogen P; Hong KH; Cao Q; Keathley P; Kärtner FX Opt Express; 2019 Mar; 27(6):9144-9154. PubMed ID: 31052723 [TBL] [Abstract][Full Text] [Related]
12. High-repetition-rate optical parametric chirped-pulse amplifier producing 1-microJ, sub-100-fs pulses in the mid-infrared. Erny C; Heese C; Haag M; Gallmann L; Keller U Opt Express; 2009 Feb; 17(3):1340-5. PubMed ID: 19188962 [TBL] [Abstract][Full Text] [Related]
13. Cr:ZnS-based soliton self-frequency shifted signal generation for a tunable sub-100 fs MWIR OPCPA. Fuertjes P; von Grafenstein L; Mei C; Bock M; Griebner U; Elsaesser T Opt Express; 2022 Feb; 30(4):5142-5150. PubMed ID: 35209483 [TBL] [Abstract][Full Text] [Related]
14. Generation of octave-spanning mid-infrared pulses from cascaded second-order nonlinear processes in a single crystal. Yin Y; Ren X; Chew A; Li J; Wang Y; Zhuang F; Wu Y; Chang Z Sci Rep; 2017 Sep; 7(1):11097. PubMed ID: 28894279 [TBL] [Abstract][Full Text] [Related]
15. Generation of few-cycle infrared pulses from a degenerate dual-pump OPCPA. Hong Z; Zhang Q; Lan P; Lu P Opt Express; 2014 Mar; 22(5):5544-57. PubMed ID: 24663895 [TBL] [Abstract][Full Text] [Related]
16. Few-cycle 1.9-μm pulse generation via collinear spectrum synthesis in multiple-crystal OPA. Hong Z; Hu F; Fu X; Cao W; Zhang Q; Lu P Opt Lett; 2019 Jul; 44(14):3438-3441. PubMed ID: 31305542 [TBL] [Abstract][Full Text] [Related]
19. Compact OPCPA system seeded by a Cr:ZnS laser for generating tunable femtosecond pulses in the MWIR. Fuertjes P; von Grafenstein L; Ueberschaer D; Mei C; Griebner U; Elsaesser T Opt Lett; 2021 Apr; 46(7):1704-1707. PubMed ID: 33793523 [TBL] [Abstract][Full Text] [Related]
20. Broadband main OPCPA amplifier at 808 nm wavelength in high deuterated DKDP crystals. Liang X; Xie X; Zhang C; Kang J; Yang Q; Zhu P; Guo A; Zhu H; Yang S; Cui Z; Sun M; Zhu J Opt Lett; 2018 Dec; 43(23):5713-5716. PubMed ID: 30499975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]