These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28367985)

  • 1. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants.
    Gorb EV; Hofmann P; Filippov AE; Gorb SN
    Sci Rep; 2017 Apr; 7():45483. PubMed ID: 28367985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.
    Gorb E; Haas K; Henrich A; Enders S; Barbakadze N; Gorb S
    J Exp Biol; 2005 Dec; 208(Pt 24):4651-62. PubMed ID: 16326946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.
    Scholz I; Bückins M; Dolge L; Erlinghagen T; Weth A; Hischen F; Mayer J; Hoffmann S; Riederer M; Riedel M; Baumgartner W
    J Exp Biol; 2010 Apr; 213(Pt 7):1115-25. PubMed ID: 20228348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-adhesive effects of plant wax coverage on insect attachment.
    Gorb EV; Gorb SN
    J Exp Bot; 2017 Nov; 68(19):5323-5337. PubMed ID: 28992238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.
    Gorb EV; Purtov J; Gorb SN
    Sci Rep; 2014 Jun; 4():5154. PubMed ID: 24889352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers.
    Riedel M; Eichner A; Jetter R
    Planta; 2003 Nov; 218(1):87-97. PubMed ID: 12883887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids.
    Riedel M; Eichner A; Meimberg H; Jetter R
    Planta; 2007 May; 225(6):1517-34. PubMed ID: 17109149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface.
    Bohn HF; Federle W
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14138-43. PubMed ID: 15383667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes.
    Gorb EV; Gorb SN
    Beilstein J Nanotechnol; 2024; 15():385-395. PubMed ID: 38633766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM).
    Koch K; Neinhuis C; Ensikat HJ; Barthlott W
    J Exp Bot; 2004 Mar; 55(397):711-8. PubMed ID: 14966216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths.
    Gorb E; Böhm S; Jacky N; Maier LP; Dening K; Pechook S; Pokroy B; Gorb S
    Beilstein J Nanotechnol; 2014; 5():1031-41. PubMed ID: 25161838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves.
    Buschhaus C; Herz H; Jetter R
    Ann Bot; 2007 Dec; 100(7):1557-64. PubMed ID: 17933845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: a cryo-SEM approach.
    Gorb EV; Baum MJ; Gorb SN
    Sci Rep; 2013 Oct; 3():3078. PubMed ID: 24165663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflectance Spectroscopy for Non-Destructive Measurement and Genetic Analysis of Amounts and Types of Epicuticular Waxes on Onion Leaves.
    Munaiz ED; Townsend PA; Havey MJ
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.
    Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P
    Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural features of reconstituted wheat wax films.
    Pambou E; Li Z; Campana M; Hughes A; Clifton L; Gutfreund P; Foundling J; Bell G; Lu JR
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27466439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax.
    Zeisler-Diehl V; Müller Y; Schreiber L
    J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical compositions and cryo-adhesive probing of the epicuticular wax crystals on fruit surface of wax gourd (Benincasa hispida).
    Huang H; Yan J; Yan H; Jiang B
    Food Chem; 2024 May; 441():138277. PubMed ID: 38176138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment to plant surface waxes by an insect predator.
    Eigenbrode SD; Jetter R
    Integr Comp Biol; 2002 Dec; 42(6):1091-9. PubMed ID: 21680392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.