These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28368010)

  • 1. Synthesis of Zn(II)-Doped Magnetite Leaf-Like Nanorings for Efficient Electromagnetic Wave Absorption.
    Yang S; Jiang JT; Xu CY; Wang Y; Xu YY; Cao L; Zhen L
    Sci Rep; 2017 Apr; 7():45480. PubMed ID: 28368010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable synthesis and magnetism of iron oxides nanorings.
    Lv B; Xu Y; Gao Q; Wu D; Sun Y
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2348-59. PubMed ID: 20355433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag.
    Yan P; Shen Y; Du X; Chong J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32392790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni-Zn ferrite.
    Derakhshani M; Taheri-Nassaj E; Jazirehpour M; Masoudpanah SM
    Sci Rep; 2021 May; 11(1):9468. PubMed ID: 33947912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of necklace-like magnetic nanorings.
    Wang H; Chen QW; Sun YB; Wang MS; Sun LX; Yan WS
    Langmuir; 2010 Apr; 26(8):5957-62. PubMed ID: 20302284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Hydrothermal Synthesis of Fe3O4/C Core-Shell Nanorings for Efficient Low-Frequency Microwave Absorption.
    Wu T; Liu Y; Zeng X; Cui T; Zhao Y; Li Y; Tong G
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7370-80. PubMed ID: 26915716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of microwave absorption properties of polyester coatings using NiFe
    Solgi S; Seyed Dorraji MS; Hosseini SF; Rasoulifard MH; Hajimiri I; Amani-Ghadim A
    Sci Rep; 2021 Sep; 11(1):19339. PubMed ID: 34588525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Preparation of Cobalt Nanoparticles Decorated in N-Doped Carbon Nanofibers as Excellent Electromagnetic Wave Absorbers.
    Liu H; Li Y; Yuan M; Sun G; Li H; Ma S; Liao Q; Zhang Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22591-22601. PubMed ID: 29888901
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Alaghmandfard A; Madaah Hosseini HR
    Appl Nanosci; 2021; 11(3):849-860. PubMed ID: 33425639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and microwave absorption properties of magnetite nanoparticles.
    Shao X; Dai B; Zhang X; Ma Y
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1122-7. PubMed ID: 22629906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties.
    Long Q; Xu Z; Xiao H; Xie K
    RSC Adv; 2018 Jan; 8(3):1210-1217. PubMed ID: 35540898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.
    Castellanos-Rubio I; Arriortua O; Marcano L; Rodrigo I; Iglesias-Rojas D; BarĂ³n A; Olazagoitia-Garmendia A; Olivi L; Plazaola F; Fdez-Gubieda ML; Castellanos-Rubio A; Garitaonandia JS; Orue I; Insausti M
    Chem Mater; 2021 May; 33(9):3139-3154. PubMed ID: 34556898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced Graphene Oxide-Wrapped Super Dense Fe
    Yu Q; Wang Y; Chen P; Nie W; Chen H; Zhou J
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31159485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.
    Yang C; Dai S; Zhang X; Zhao T; Yan S; Zhao X
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1483-90. PubMed ID: 27433608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and microwave absorption properties of electromagnetic functionalized Fe
    Zhu YF; Ni QQ; Fu YQ; Natsuki T
    J Nanopart Res; 2013; 15(10):1988. PubMed ID: 24273439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.
    Wei L; Che R; Jiang Y; Yu B
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S27-31. PubMed ID: 25078834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Structure and Magnetic Behavior of Zn-Doped Magnetite Aqueous Ferrofluids Prepared from Natural Sand for Antibacterial Agents.
    Taufiq A; Yuliantika D; Sunaryono S; Saputro RE; Hidayat N; Mufti N; Susanto H; Soontaranon S; Nur H
    An Acad Bras Cienc; 2021; 93(4):e20200774. PubMed ID: 34705939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic graphene enabled tunable microwave absorber via thermal control.
    Quan L; Qin FX; Li YH; Estevez D; Fu GJ; Wang H; Peng HX
    Nanotechnology; 2018 Jun; 29(24):245706. PubMed ID: 29595518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Fe-doped TiO2 nanotube arrays and their room-temperature ferromagnetic properties.
    Wang J; Liu C; Shen W; Cao C; Song S
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5951-6. PubMed ID: 25936034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterostructured Nanorings of Fe-Fe
    Jian X; Xiao X; Deng L; Tian W; Wang X; Mahmood N; Dou S
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9369-9378. PubMed ID: 29470047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.