BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2836822)

  • 1. Naloxone-like influence of TRH and ACTH-(4-7) on hypothalamic blood flow autoregulation in the rat.
    Sandor P; de Jong W; de Wied D
    Peptides; 1988; 9(2):215-9. PubMed ID: 2836822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the analeptic potency of TRH, ACTH 4-10, LHRH, and related peptides.
    Bissette G; Nemeroff CB; Loosen PT; Prange AJ; Lipton MA
    Pharmacol Biochem Behav; 1976; 5(Suppl 1):135-8. PubMed ID: 189324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothalamic blood flow autoregulation remains unaltered following surgical and pharmacological blockade of central vasopressin.
    Sandor P; Petty M; de Jong W; Palkovits M; de Wied D
    Brain Res; 1991 Dec; 566(1-2):212-8. PubMed ID: 1814538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of centrally administered alpha- and gamma 2-melanocyte-stimulating hormone on hypothalamic blood flow autoregulation in the rat.
    Sandor P; de Jong W; Cox-van Put J; de Wied D
    Brain Res; 1987 Oct; 424(1):189-92. PubMed ID: 2825914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endorphinergic mechanisms in cerebral blood flow autoregulation.
    Sándor P; De Jong W; De Wied D
    Brain Res; 1986 Oct; 386(1-2):122-9. PubMed ID: 2877714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressor, tachycardic and behavioral excitatory responses in conscious rats following ICV administration of ACTH and CRF are blocked by naloxone pretreatment.
    Saunders WS; Thornhill JA
    Peptides; 1986; 7(4):597-601. PubMed ID: 3020526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrovascular effects of the TRH analogues pGlu-3-methyl-His-Pro amide and pGlu-Glu-Pro amide: a comparison with TRH.
    Koskinen LO; Koch ML; Svedberg J
    Ups J Med Sci; 2000; 105(1):73-83. PubMed ID: 10893055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats.
    Komjáti K; Velkei-Harvich M; Tóth J; Dallos G; Nyáry I; Sándor P
    Acta Physiol Scand; 1996 May; 157(1):53-61. PubMed ID: 8735654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some characteristics of TRH-induced grooming behavior in rats.
    Van Wimersma Greidanus TB; Maigret C; Rinkel GJ; Metzger P; Panis M; Van Zinnicq Bergmann FE; Poelman PJ; Colbern DL
    Peptides; 1988; 9(2):283-8. PubMed ID: 3131746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of stress-induced neuroendocrine and behavioral responses in the rat by prepro-thyrotropin-releasing hormone 178-199.
    McGivern RF; Rittenhouse P; Aird F; Van de Kar LD; Redei E
    J Neurosci; 1997 Jun; 17(12):4886-94. PubMed ID: 9169546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naloxone and TRH affect regional blood flows in the anesthetized rabbit.
    Koskinen LO
    Peptides; 1991; 12(6):1273-7. PubMed ID: 1815213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyrotropin-releasing factor-induced adrenocorticotropin secretion is mediated by corticotropin-releasing factor.
    Brown MR; Carver-Moore K; Gray TS; Rivier C
    Endocrinology; 1989 Nov; 125(5):2558-62. PubMed ID: 2551657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular effects produced by injections of thyrotropin-releasing hormone in specific preoptic and hypothalamic nuclei in the rat.
    Diz DI; Jacobowitz DM
    Peptides; 1984; 5(4):801-8. PubMed ID: 6436799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low intravenous doses of TRH, acid-TRH and cyclo(His-Pro) on cerebral and peripheral blood flows.
    Koskinen LO
    Br J Pharmacol; 1986 Mar; 87(3):509-19. PubMed ID: 3099875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-hypothalamic injection of thyrotropin-releasing hormone suppresses brown fat thermogenesis in the anaesthetized rat.
    Amir S; Pollock R; Lagiorgia M
    Brain Res; 1989 Jan; 478(2):361-4. PubMed ID: 2493964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of thyrotropin and prolactin by a thyrotropin-releasing hormone (TRH) precursor, TRH-Gly: conversion to TRH is sufficient for in vivo effects.
    Pekary AE; Stephens R; Simard M; Pang XP; Smith V; DiStefano JJ; Hershman JM
    Neuroendocrinology; 1990 Dec; 52(6):618-25. PubMed ID: 2126612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of wet-dog shakes by intracerebral 'acid' TRH in rats.
    Boschi G; Launay N; Rips R
    Neurosci Lett; 1980 Feb; 16(2):209-12. PubMed ID: 6820479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central respiratory stimulation produced by thyrotropin-releasing hormone in the cat.
    Holtman JR; Buller AL; Hamosh P; Gillis RA
    Peptides; 1986; 7(2):207-12. PubMed ID: 3090523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thyrotropin-releasing hormone-like peptides pGlu-Phe-Pro amide and pGlu-Glu-Pro amide increase plasma triiodothyronine levels in the mouse; the activity is sensitive to testosterone.
    Cremades A; Peñafiel R; Rausell V; Del Rio-Garcia J; Smyth DG
    Eur J Pharmacol; 1998 Sep; 358(1):63-7. PubMed ID: 9809870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptic peptides of prepro-TRH antagonize TRH-induced GH secretion in chickens at extrapituitary sites.
    Harvey S; Cogburn LA
    J Endocrinol; 1996 Dec; 151(3):359-64. PubMed ID: 8994381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.