These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 28368387)
1. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Paul BG; Burstein D; Castelle CJ; Handa S; Arambula D; Czornyj E; Thomas BC; Ghosh P; Miller JF; Banfield JF; Valentine DL Nat Microbiol; 2017 Apr; 2():17045. PubMed ID: 28368387 [TBL] [Abstract][Full Text] [Related]
2. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Sakai HD; Nur N; Kato S; Yuki M; Shimizu M; Itoh T; Ohkuma M; Suwanto A; Kurosawa N Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022241 [TBL] [Abstract][Full Text] [Related]
3. Conservation of the C-type lectin fold for accommodating massive sequence variation in archaeal diversity-generating retroelements. Handa S; Paul BG; Miller JF; Valentine DL; Ghosh P BMC Struct Biol; 2016 Aug; 16(1):13. PubMed ID: 27578274 [TBL] [Abstract][Full Text] [Related]
4. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Wu L; Gingery M; Abebe M; Arambula D; Czornyj E; Handa S; Khan H; Liu M; Pohlschroder M; Shaw KL; Du A; Guo H; Ghosh P; Miller JF; Zimmerly S Nucleic Acids Res; 2018 Jan; 46(1):11-24. PubMed ID: 29186518 [TBL] [Abstract][Full Text] [Related]
5. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Paul BG; Bagby SC; Czornyj E; Arambula D; Handa S; Sczyrba A; Ghosh P; Miller JF; Valentine DL Nat Commun; 2015 Mar; 6():6585. PubMed ID: 25798780 [TBL] [Abstract][Full Text] [Related]
7. Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Castelle CJ; Banfield JF Cell; 2018 Mar; 172(6):1181-1197. PubMed ID: 29522741 [TBL] [Abstract][Full Text] [Related]
8. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Williams TA; Szöllősi GJ; Spang A; Foster PG; Heaps SE; Boussau B; Ettema TJG; Embley TM Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4602-E4611. PubMed ID: 28533395 [TBL] [Abstract][Full Text] [Related]
9. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Castelle CJ; Brown CT; Anantharaman K; Probst AJ; Huang RH; Banfield JF Nat Rev Microbiol; 2018 Oct; 16(10):629-645. PubMed ID: 30181663 [TBL] [Abstract][Full Text] [Related]
10. Soil Candidate Phyla Radiation Bacteria Encode Components of Aerobic Metabolism and Co-occur with Nanoarchaea in the Rare Biosphere of Rhizosphere Grassland Communities. Nicolas AM; Jaffe AL; Nuccio EE; Taga ME; Firestone MK; Banfield JF mSystems; 2021 Aug; 6(4):e0120520. PubMed ID: 34402646 [TBL] [Abstract][Full Text] [Related]
11. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. Zhang IH; Borer B; Zhao R; Wilbert S; Newman DK; Babbin AR mBio; 2024 Mar; 15(3):e0291823. PubMed ID: 38380943 [TBL] [Abstract][Full Text] [Related]
12. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. Galperin MY; Makarova KS; Wolf YI; Koonin EV J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101 [TBL] [Abstract][Full Text] [Related]
13. Towards functional characterization of archaeal genomic dark matter. Makarova KS; Wolf YI; Koonin EV Biochem Soc Trans; 2019 Feb; 47(1):389-398. PubMed ID: 30710061 [TBL] [Abstract][Full Text] [Related]
14. Metagenomic Insights into the Metabolic and Ecological Functions of Abundant Deep-Sea Hydrothermal Vent DPANN Archaea. Cai R; Zhang J; Liu R; Sun C Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608296 [TBL] [Abstract][Full Text] [Related]
15. Lateral Gene Transfer Shapes the Distribution of RuBisCO among Candidate Phyla Radiation Bacteria and DPANN Archaea. Jaffe AL; Castelle CJ; Dupont CL; Banfield JF Mol Biol Evol; 2019 Mar; 36(3):435-446. PubMed ID: 30544151 [TBL] [Abstract][Full Text] [Related]
16. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria. Wrighton KC; Castelle CJ; Varaljay VA; Satagopan S; Brown CT; Wilkins MJ; Thomas BC; Sharon I; Williams KH; Tabita FR; Banfield JF ISME J; 2016 Nov; 10(11):2702-2714. PubMed ID: 27137126 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Diversity and Evolutionary History of the Archaeal Phylum " Kadnikov VV; Savvichev AS; Mardanov AV; Beletsky AV; Chupakov AV; Kokryatskaya NM; Pimenov NV; Ravin NV Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978130 [TBL] [Abstract][Full Text] [Related]
18. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Petitjean C; Deschamps P; López-García P; Moreira D Genome Biol Evol; 2014 Dec; 7(1):191-204. PubMed ID: 25527841 [TBL] [Abstract][Full Text] [Related]
19. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. Dombrowski N; Lee JH; Williams TA; Offre P; Spang A FEMS Microbiol Lett; 2019 Jan; 366(2):. PubMed ID: 30629179 [TBL] [Abstract][Full Text] [Related]
20. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Brochier-Armanet C; Forterre P Archaea; 2007 May; 2(2):83-93. PubMed ID: 17350929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]