These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28368570)

  • 1. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 May; 51(9):5306-5316. PubMed ID: 28368570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 Nov; 51(21):12956-12964. PubMed ID: 28994592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading.
    Dykstra CM; Pavlostathis SG
    Water Res; 2021 Jul; 200():117268. PubMed ID: 34098269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock.
    Dykstra CM; Cheng C; Pavlostathis SG
    Environ Sci Technol; 2020 Jul; 54(14):8949-8957. PubMed ID: 32544322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane.
    Baek G; Kim J; Lee S; Lee C
    Bioresour Technol; 2017 Oct; 241():1201-1207. PubMed ID: 28688737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system.
    Van Eerten-Jansen MC; Veldhoen AB; Plugge CM; Stams AJ; Buisman CJ; Ter Heijne A
    Archaea; 2013; 2013():481784. PubMed ID: 24187516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual effects of CO
    Gao T; Zhang H; Xu X; Teng J
    Sci Total Environ; 2022 Apr; 818():151732. PubMed ID: 34826488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Electron Transfer Behaviors of a Biocathode Regulated by Cathode Potentials in Microbial Electrosynthesis Cells for Biogas Upgrading.
    Tian Y; Wu J; Liang D; Li J; Liu G; Lin N; Li D; Feng Y
    Environ Sci Technol; 2023 Apr; 57(16):6733-6742. PubMed ID: 37036348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community.
    Ragab A; Katuri KP; Ali M; Saikaly PE
    Front Microbiol; 2019; 10():1747. PubMed ID: 31417533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community.
    Bretschger O; Carpenter K; Phan T; Suzuki S; Ishii S; Grossi-Soyster E; Flynn M; Hogan J
    Bioresour Technol; 2015 Nov; 195():254-64. PubMed ID: 26178785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term operation of microbial electrosynthesis cell reducing CO
    Bajracharya S; Yuliasni R; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioelectrochemistry; 2017 Feb; 113():26-34. PubMed ID: 27631151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level.
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Sci Rep; 2020 Nov; 10(1):19824. PubMed ID: 33188217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production.
    Dou Z; Dykstra CM; Pavlostathis SG
    Sci Total Environ; 2018 Aug; 633():1012-1021. PubMed ID: 29758854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.