BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 28368586)

  • 1. Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids.
    Kazakova OB; Giniyatullina GV; Mustafin AG; Babkov DA; Sokolova EV; Spasov AA
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New ring-A modified cycloartane triterpenoids from Dysoxylum malabaricum bark: Isolation, structure elucidation and their cytotoxicity.
    Bhardwaj N; Gupta P; Tripathi N; Chakrabarty S; Verma A; Kumari S; Gautam V; Ravikanth G; Jain SK
    Steroids; 2024 May; 205():109390. PubMed ID: 38367679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel pentacyclic triterpene acid from the stem barks of
    Silvère Gade I; Nyemb JN; Mahamat A; Atchade AT; Talla E; Laurent S; Henoumont C; Venditti A
    Nat Prod Res; 2024 Apr; 38(8):1294-1301. PubMed ID: 36308287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Toxoplasma gondii effect of lupane-type triterpenes from the bark of black alder (Alnus glutinosa) and identification of a potential target by reverse docking.
    Darme P; Escotte-Binet S; Cordonnier J; Remy S; Hubert J; Sayagh C; Borie N; Villena I; Voutquenne-Nazabadioko L; Dauchez M; Baud S; Renault JH; Aubert D
    Parasite; 2022; 29():7. PubMed ID: 35142606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability.
    Oboh M; Govender L; Siwela M; Mkhwanazi BN
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentacyclic triterpene acids, rotungenic acid and barbinervic acid, from fresh leaves of
    Shimada A; Ueno H; Yamamoto K; Kawabata K; Inagaki M
    Nat Prod Res; 2024 May; 38(9):1611-1615. PubMed ID: 36434778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyaluronidase Inhibitory Activity of Pentacylic Triterpenoids from Prismatomeris tetrandra (Roxb.) K. Schum: Isolation, Synthesis and QSAR Study.
    Abdullah NH; Thomas NF; Sivasothy Y; Lee VS; Liew SY; Noorbatcha IA; Awang K
    Int J Mol Sci; 2016 Feb; 17(2):143. PubMed ID: 26907251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of a skin active ingredient - glochidone by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans.
    Wojtkiewicz AM; Oleksy G; Malinowska MA; Janeczko T
    J Steroid Biochem Mol Biol; 2024 Jul; 241():106513. PubMed ID: 38521362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches.
    Ghiulai R; Roşca OJ; Antal DS; Mioc M; Mioc A; Racoviceanu R; Macaşoi I; Olariu T; Dehelean C; Creţu OM; Voicu M; Şoica C
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function-Oriented Synthesis of Pentacyclic Triterpenoids and Discovery of an
    Stempel ZD; Radomska HS; Coss CC; Micalizio GC
    Org Lett; 2024 Apr; 26(15):3054-3059. PubMed ID: 38557107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction: Purification, Molecular Docking and Cytotoxicity Evaluation of Bioactive Pentacyclic Polyhydroxylated Triterpenoids from Salvia urmiensis.
    Farimani MM; Abbas-Mohammadi M; Ghorbannia-Dellavar S; Nejad-Ebrahimi S; Hamburger M
    Planta Med; 2024 Apr; ():. PubMed ID: 38621695
    [No Abstract]   [Full Text] [Related]  

  • 12. Classification, biosynthesis, and biological functions of triterpene esters in plants.
    Liu J; Yin X; Kou C; Thimmappa R; Hua X; Xue Z
    Plant Commun; 2024 Apr; 5(4):100845. PubMed ID: 38356259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer Activity of 2-
    Chae HJ; Kim GJ; Deshar B; Kim HJ; Shin MJ; Kwon H; Youn UJ; Nam JW; Kim SH; Choi H; Suh SS
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes.
    Lautié E; Russo O; Ducrot P; Boutin JA
    Front Pharmacol; 2020; 11():397. PubMed ID: 32317969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp. viridis Bark.
    Novakovic M; Nikodinovic-Runic J; Veselinovic J; Ilic-Tomic T; Vidakovic V; Tesevic V; Milosavljevic S
    J Nat Prod; 2017 May; 80(5):1255-1263. PubMed ID: 28368586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive triterpenoids from Callistemon lanceolatus.
    Jeong W; Hong SS; Kim N; Yang YT; Shin YS; Lee C; Hwang BY; Lee D
    Arch Pharm Res; 2009 Jun; 32(6):845-9. PubMed ID: 19557361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anti-influenza component of the bark of Alnus japonica.
    Tung NH; Kwon HJ; Kim JH; Ra JC; Kim JA; Kim YH
    Arch Pharm Res; 2010 Mar; 33(3):363-7. PubMed ID: 20361299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-mycobacterial triterpenes from the Canadian medicinal plant Alnus incana.
    Li H; Webster D; Johnson JA; Gray CA
    J Ethnopharmacol; 2015 May; 165():148-51. PubMed ID: 25725435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentacyclic triterpenoids and their saponins with apoptosis-inducing activity.
    Wang SR; Fang WS
    Curr Top Med Chem; 2009; 9(16):1581-96. PubMed ID: 19903161
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.