These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28368827)

  • 1. BRANE Clust: Cluster-Assisted Gene Regulatory Network Inference Refinement.
    Pirayre A; Couprie C; Duval L; Pesquet JC
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):850-860. PubMed ID: 28368827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BRANE Cut: biologically-related a priori network enhancement with graph cuts for gene regulatory network inference.
    Pirayre A; Couprie C; Bidard F; Duval L; Pesquet JC
    BMC Bioinformatics; 2015 Nov; 16():368. PubMed ID: 26537179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Model Integration Network Inference Algorithm with Clustering and Hub Genes Finding.
    Li W; Zhang W; Zhang J
    Mol Inform; 2020 May; 39(5):e1900075. PubMed ID: 31990443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data.
    Abu-Jamous B; Kelly S
    Genome Biol; 2018 Oct; 19(1):172. PubMed ID: 30359297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative random forest for gene regulatory network inference.
    Petralia F; Wang P; Yang J; Tu Z
    Bioinformatics; 2015 Jun; 31(12):i197-205. PubMed ID: 26072483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. bLARS: An Algorithm to Infer Gene Regulatory Networks.
    Singh N; Vidyasagar M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification.
    Spurney R; Schwartz M; Gobble M; Sozzani R; Van den Broeck L
    Methods Mol Biol; 2021; 2328():47-65. PubMed ID: 34251619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.
    Ud-Dean SM; Heise S; Klamt S; Gunawan R
    BMC Bioinformatics; 2016 Jun; 17():252. PubMed ID: 27342648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.
    Razaghi-Moghadam Z; Nikoloski Z
    NPJ Syst Biol Appl; 2020 Jun; 6(1):21. PubMed ID: 32606380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The condition-dependent transcriptional network in Escherichia coli.
    Lemmens K; De Bie T; Dhollander T; Monsieurs P; De Moor B; Collado-Vides J; Engelen K; Marchal K
    Ann N Y Acad Sci; 2009 Mar; 1158():29-35. PubMed ID: 19348629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring regulatory networks from expression data using tree-based methods.
    Huynh-Thu VA; Irrthum A; Wehenkel L; Geurts P
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding dominant sets in microarray data.
    Fu X; Teng L; Li Y; Chen W; Mao Y; Shen IF; Xie Y
    Front Biosci; 2005 Sep; 10():3068-77. PubMed ID: 15970561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
    Vatsa D; Agarwal S
    PLoS One; 2021; 16(5):e0251666. PubMed ID: 33989333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
    Moerman T; Aibar Santos S; Bravo González-Blas C; Simm J; Moreau Y; Aerts J; Aerts S
    Bioinformatics; 2019 Jun; 35(12):2159-2161. PubMed ID: 30445495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.
    Huynh-Thu VA; Geurts P
    Sci Rep; 2018 Feb; 8(1):3384. PubMed ID: 29467401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering context-specific gene regulatory networks.
    Ramesh A; Trevino R; VON Hoff DD; Kim S
    Pac Symp Biocomput; 2010; ():444-55. PubMed ID: 19908396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.