BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

999 related articles for article (PubMed ID: 28369033)

  • 1. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
    Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W
    Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing.
    Klann TS; Crawford GE; Reddy TE; Gersbach CA
    Methods Mol Biol; 2018; 1767():447-480. PubMed ID: 29524151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
    Khatodia S; Bhatotia K; Tuteja N
    Bioengineered; 2017 May; 8(3):274-279. PubMed ID: 28581909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the noncoding genome via large-scale CRISPR screens.
    Shukla A; Huangfu D
    Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements.
    Liu SY; Yi GQ; Tang ZL; Chen B
    Yi Chuan; 2020 May; 42(5):435-443. PubMed ID: 32431295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [High-throughput approaches to study cis-regulating elements].
    España AP; Santiago-Algarra D; Pradel L; Spicuglia S
    Biol Aujourdhui; 2017; 211(4):271-280. PubMed ID: 29956654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing: The domestication of Cas9.
    Urnov F
    Nature; 2016 Jan; 529(7587):468-9. PubMed ID: 26819037
    [No Abstract]   [Full Text] [Related]  

  • 14. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
    Tycko J; Wainberg M; Marinov GK; Ursu O; Hess GT; Ego BK; Aradhana ; Li A; Truong A; Trevino AE; Spees K; Yao D; Kaplow IM; Greenside PG; Morgens DW; Phanstiel DH; Snyder MP; Bintu L; Greenleaf WJ; Kundaje A; Bassik MC
    Nat Commun; 2019 Sep; 10(1):4063. PubMed ID: 31492858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes.
    Huang H; Wu Q
    J Genet Genomics; 2016 May; 43(5):273-88. PubMed ID: 27210040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells.
    Kuscu C; Mammadov R; Czikora A; Unlu H; Tufan T; Fischer NL; Arslan S; Bekiranov S; Kanemaki M; Adli M
    J Mol Biol; 2019 Jan; 431(1):111-121. PubMed ID: 30098338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
    Sharon E; Chen SA; Khosla NM; Smith JD; Pritchard JK; Fraser HB
    Cell; 2018 Oct; 175(2):544-557.e16. PubMed ID: 30245013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.