These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28369042)

  • 1. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain.
    Lee D; Creed M; Jung K; Stefanelli T; Wendler DJ; Oh WC; Mignocchi NL; Lüscher C; Kwon HB
    Nat Methods; 2017 May; 14(5):495-503. PubMed ID: 28369042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic inhibition of behavior with anion channelrhodopsins.
    Mohammad F; Stewart JC; Ott S; Chlebikova K; Chua JY; Koh TW; Ho J; Claridge-Chang A
    Nat Methods; 2017 Mar; 14(3):271-274. PubMed ID: 28114289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technologies for large-scale mapping of functional neural circuits active during a user-defined time window.
    Barykina NV; Karasev MM; Verkhusha VV; Shcherbakova DM
    Prog Neurobiol; 2022 Sep; 216():102290. PubMed ID: 35654210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporally precise single-cell-resolution optogenetics.
    Shemesh OA; Tanese D; Zampini V; Linghu C; Piatkevich K; Ronzitti E; Papagiakoumou E; Boyden ES; Emiliani V
    Nat Neurosci; 2017 Dec; 20(12):1796-1806. PubMed ID: 29184208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calcium- and light-gated switch to induce gene expression in activated neurons.
    Lee D; Hyun JH; Jung K; Hannan P; Kwon HB
    Nat Biotechnol; 2017 Sep; 35(9):858-863. PubMed ID: 28650460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system.
    Stefański R; Ziółkowska B; Kuśmider M; Mierzejewski P; Wyszogrodzka E; Kołomańska P; Dziedzicka-Wasylewska M; Przewłocki R; Kostowski W
    Brain Res; 2007 Jul; 1157():1-10. PubMed ID: 17544385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors.
    Grace AA; Floresco SB; Goto Y; Lodge DJ
    Trends Neurosci; 2007 May; 30(5):220-7. PubMed ID: 17400299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrays of microscopic organic LEDs for high-resolution optogenetics.
    Steude A; Witts EC; Miles GB; Gather MC
    Sci Adv; 2016 May; 2(5):e1600061. PubMed ID: 27386540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Light-Controlled Gene Expression and Protein Targeting in Neurons and Non-neuronal Cells.
    Redchuk TA; Karasev MM; Omelina ES; Verkhusha VV
    Chembiochem; 2018 Jun; 19(12):1334-1340. PubMed ID: 29465801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lentiviral-mediated gene delivery reveals distinct roles of nucleus accumbens dopamine D2 and D3 receptors in novelty- and light-induced locomotor activity.
    Fernandes AR; Easton AC; De Souza Silva MA; Schumann G; Müller CP; Desrivières S
    Eur J Neurosci; 2012 Apr; 35(8):1344-53. PubMed ID: 22394078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel-based optogenetic silencing.
    Bernal Sierra YA; Rost BR; Pofahl M; Fernandes AM; Kopton RA; Moser S; Holtkamp D; Masala N; Beed P; Tukker JJ; Oldani S; Bönigk W; Kohl P; Baier H; Schneider-Warme F; Hegemann P; Beck H; Seifert R; Schmitz D
    Nat Commun; 2018 Nov; 9(1):4611. PubMed ID: 30397200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology].
    Sarkisova KY; Kulikov MA; Kudrin VS; Midzyanovskaya IS; Birioukova LM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(6):668-85. PubMed ID: 25975143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic pharmacology for control of native neuronal signaling proteins.
    Kramer RH; Mourot A; Adesnik H
    Nat Neurosci; 2013 Jul; 16(7):816-23. PubMed ID: 23799474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice.
    Le Foll B; Diaz J; Sokoloff P
    Life Sci; 2005 Jan; 76(11):1281-96. PubMed ID: 15642598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.