BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28369083)

  • 21. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
    Meierjohann S; Walter RD; Müller S
    Biochem J; 2002 Dec; 368(Pt 3):761-8. PubMed ID: 12225291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria.
    Gligorijevic B; Bennett T; McAllister R; Urbach JS; Roepe PD
    Biochemistry; 2006 Oct; 45(41):12411-23. PubMed ID: 17029397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites.
    Cruz LN; Wu Y; Ulrich H; Craig AG; Garcia CR
    Biochim Biophys Acta; 2016 Jul; 1860(7):1489-97. PubMed ID: 27080559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.
    Aroonsri A; Akinola O; Posayapisit N; Songsungthong W; Uthaipibull C; Kamchonwongpaisan S; Gbotosho GO; Yuthavong Y; Shaw PJ
    Int J Parasitol; 2016 Jul; 46(8):527-35. PubMed ID: 27150044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite's 6-phosphogluconate dehydrogenase.
    Famin O; Ginsburg H
    Parasite; 2003 Mar; 10(1):39-50. PubMed ID: 12669348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo imaging of H2O2 production in Drosophila.
    Barata AG; Dick TP
    Methods Enzymol; 2013; 526():61-82. PubMed ID: 23791094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth inhibitory effects of standard pro- and antioxidants on the human malaria parasite Plasmodium falciparum.
    Wezena CA; Krafczyk J; Staudacher V; Deponte M
    Exp Parasitol; 2017 Sep; 180():64-70. PubMed ID: 28242353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimalarial drugs disrupt ion homeostasis in malarial parasites.
    Gazarini ML; Sigolo CA; Markus RP; Thomas AP; Garcia CR
    Mem Inst Oswaldo Cruz; 2007 Jun; 102(3):329-34. PubMed ID: 17568938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-drug development against antioxidant enzymes from Plasmodium falciparum.
    Biot C; Dessolin J; Grellier P; Davioud-Charvet E
    Redox Rep; 2003; 8(5):280-3. PubMed ID: 14962365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of crisis forms in the human malaria parasite Plasmodium falciparum by gamma-interferon-activated, monocyte-derived macrophages.
    Ockenhouse CF; Schulman S; Shear HL
    J Immunol; 1984 Sep; 133(3):1601-8. PubMed ID: 6431003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of antimalarial drugs on Plasmodium falciparum gametocytes.
    Peatey CL; Skinner-Adams TS; Dixon MW; McCarthy JS; Gardiner DL; Trenholme KR
    J Infect Dis; 2009 Nov; 200(10):1518-21. PubMed ID: 19848586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development.
    Stack CM; Lowther J; Cunningham E; Donnelly S; Gardiner DL; Trenholme KR; Skinner-Adams TS; Teuscher F; Grembecka J; Mucha A; Kafarski P; Lua L; Bell A; Dalton JP
    J Biol Chem; 2007 Jan; 282(3):2069-80. PubMed ID: 17107951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress.
    van Schalkwyk DA; Saliba KJ; Biagini GA; Bray PG; Kirk K
    PLoS One; 2013; 8(3):e58933. PubMed ID: 23536836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum.
    Müller S
    Molecules; 2015 Jun; 20(6):10511-34. PubMed ID: 26060916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes.
    El Tahir A; Malhotra P; Chauhan VS
    Malar J; 2003 May; 2():11. PubMed ID: 12801422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens.
    Hapuarachchi SV; Cobbold SA; Shafik SH; Dennis AS; McConville MJ; Martin RE; Kirk K; Lehane AM
    PLoS Pathog; 2017 Feb; 13(2):e1006180. PubMed ID: 28178359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.
    Deniskin R; Frame IJ; Sosa Y; Akabas MH
    Int J Parasitol Drugs Drug Resist; 2016 Apr; 6(1):1-11. PubMed ID: 26862473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a Plasmodium falciparum parasite transformed with green fluorescent protein for antimalarial drug screening.
    Sanchez BA; Varotti FP; Rodrigues FG; Carvalho LH
    J Microbiol Methods; 2007 Jun; 69(3):518-22. PubMed ID: 17466399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.