These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
695 related articles for article (PubMed ID: 28369091)
1. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. Ma J; Ren Y; Zhang L; Kong X; Wang T; Shi Y; Bu R PLoS One; 2017; 12(4):e0174309. PubMed ID: 28369091 [TBL] [Abstract][Full Text] [Related]
2. Parathyroid hormone-related protein serves as a prognostic indicator in oral squamous cell carcinoma. Lv Z; Wu X; Cao W; Shen Z; Wang L; Xie F; Zhang J; Ji T; Yan M; Chen W J Exp Clin Cancer Res; 2014 Dec; 33(1):100. PubMed ID: 25539663 [TBL] [Abstract][Full Text] [Related]
3. Expression status of Pin1 and cyclins in oral squamous cell carcinoma: Pin1 correlates with Cyclin D1 mRNA expression and clinical significance of cyclins. Miyashita H; Uchida T; Mori S; Echigo S; Motegi K Oncol Rep; 2003; 10(4):1045-8. PubMed ID: 12792768 [TBL] [Abstract][Full Text] [Related]
5. Immunohistochemical expression levels of cyclin D1 and CREPT reflect the course and prognosis in oral precancerous lesions and squamous cell carcinoma. Siril YJ; Kouketsu A; Saito H; Takahashi T; Kumamoto H Int J Oral Maxillofac Surg; 2022 Jan; 51(1):27-32. PubMed ID: 33838964 [TBL] [Abstract][Full Text] [Related]
6. Daxx and TCF4 interaction links to oral squamous cell carcinoma growth by promoting cell cycle progression via induction of cyclin D1 expression. Lin GJ; Huang YS; Lin CK; Huang SH; Shih HM; Sytwu HK; Chen YW Clin Oral Investig; 2016 Apr; 20(3):533-40. PubMed ID: 26205068 [TBL] [Abstract][Full Text] [Related]
7. Acylglycerol kinase promotes the proliferation and cell cycle progression of oral squamous cell carcinoma. Liu G; Ren X; Gao C; Zhang W Mol Med Rep; 2015 Aug; 12(2):2225-30. PubMed ID: 25872568 [TBL] [Abstract][Full Text] [Related]
8. Semaphorin7A Promotion of Tumoral Growth and Metastasis in Human Oral Cancer by Regulation of G1 Cell Cycle and Matrix Metalloproteases: Possible Contribution to Tumoral Angiogenesis. Saito T; Kasamatsu A; Ogawara K; Miyamoto I; Saito K; Iyoda M; Suzuki T; Endo-Sakamoto Y; Shiiba M; Tanzawa H; Uzawa K PLoS One; 2015; 10(9):e0137923. PubMed ID: 26378920 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. Luo Q; Hu D; Hu S; Yan M; Sun Z; Chen F BMC Cancer; 2012 Nov; 12():517. PubMed ID: 23151022 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA‑199a‑5p suppresses migration and invasion in oral squamous cell carcinoma through inhibiting the EMT‑related transcription factor SOX4. Wei D; Wang W; Shen B; Zhou Y; Yang X; Lu G; Yang J; Shao Y Int J Mol Med; 2019 Jul; 44(1):185-195. PubMed ID: 31059001 [TBL] [Abstract][Full Text] [Related]
11. Pin1 is overexpressed in oral squamous cell carcinoma and its levels correlate with cyclin D1 overexpression. Miyashita H; Mori S; Motegi K; Fukumoto M; Uchida T Oncol Rep; 2003; 10(2):455-61. PubMed ID: 12579289 [TBL] [Abstract][Full Text] [Related]
12. CARD9 downregulation suppresses the growth of oral squamous cell carcinoma by regulating NF-κB. Ye LJ; Zhou XC; Yin XJ; Shang Y; Xiao Y; Jiang YL; Wen XX Oral Dis; 2019 Nov; 25(8):1886-1896. PubMed ID: 31306536 [TBL] [Abstract][Full Text] [Related]
13. Knockdown of Nav1.5 inhibits cell proliferation, migration and invasion via Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. Xu X; Dai Y; Feng L; Zhang H; Hu Y; Xu L; Zhu X; Jiang Y Acta Biochim Biophys Sin (Shanghai); 2020 May; 52(5):527-535. PubMed ID: 32400862 [TBL] [Abstract][Full Text] [Related]
14. Aberrant promoter hypermethylation of the CHFR gene in oral squamous cell carcinomas. Baba S; Hara A; Kato K; Long NK; Hatano Y; Kimura M; Okano Y; Yamada Y; Shibata T Oncol Rep; 2009 Nov; 22(5):1173-9. PubMed ID: 19787237 [TBL] [Abstract][Full Text] [Related]
15. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Ma P; Yu H; Zhu M; Liu L; Cheng L; Han Z; Jin W Cell Cycle; 2024 Mar; 23(5):588-601. PubMed ID: 38743408 [TBL] [Abstract][Full Text] [Related]
16. Tumor protein D54 is a negative regulator of extracellular matrix-dependent migration and attachment in oral squamous cell carcinoma-derived cell lines. Mukudai Y; Kondo S; Fujita A; Yoshihama Y; Shirota T; Shintani S Cell Oncol (Dordr); 2013 Jun; 36(3):233-45. PubMed ID: 23529586 [TBL] [Abstract][Full Text] [Related]
17. TRIB3 promotes the growth of oral squamous cell carcinoma by regulating JNK/JUN-mediated aerobic glycolysis. Meng Z; Wang Y; Wang X; Han X Arch Oral Biol; 2024 Aug; 164():105977. PubMed ID: 38696945 [TBL] [Abstract][Full Text] [Related]
18. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Lee JC; Chung LC; Chen YJ; Feng TH; Juang HH Cancer Lett; 2014 Dec; 355(2):242-52. PubMed ID: 25218595 [TBL] [Abstract][Full Text] [Related]
19. Low expression of miR-let-7a promotes cell growth and invasion through the regulation of c-Myc in oral squamous cell carcinoma. Luo C; Zhang J; Zhang Y; Zhang X; Chen Y; Fan W Cell Cycle; 2020 Aug; 19(15):1983-1993. PubMed ID: 32594835 [TBL] [Abstract][Full Text] [Related]
20. BAP18 is involved in upregulation of CCND1/2 transcription to promote cell growth in oral squamous cell carcinoma. Wang X; Wang C; Yan G; Kang Y; Sun G; Wang S; Zou R; Sun H; Zeng K; Song H; Liu W; Sun N; Liu W; Zhao Y EBioMedicine; 2020 Mar; 53():102685. PubMed ID: 32113162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]