BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28369256)

  • 21. Robust identification of transcriptional regulatory networks using a Gibbs sampler on outlier sum statistic.
    Gu J; Xuan J; Riggins RB; Chen L; Wang Y; Clarke R
    Bioinformatics; 2012 Aug; 28(15):1990-7. PubMed ID: 22595208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enrichment constrained time-dependent clustering analysis for finding meaningful temporal transcription modules.
    Meng J; Gao SJ; Huang Y
    Bioinformatics; 2009 Jun; 25(12):1521-7. PubMed ID: 19351618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamically weighted clustering with noise set.
    Shen Y; Sun W; Li KC
    Bioinformatics; 2010 Feb; 26(3):341-7. PubMed ID: 20007256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets.
    Risso D; Purvis L; Fletcher RB; Das D; Ngai J; Dudoit S; Purdom E
    PLoS Comput Biol; 2018 Sep; 14(9):e1006378. PubMed ID: 30180157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary Multiobjective Clustering and Its Applications to Patient Stratification.
    Li X; Wong KC
    IEEE Trans Cybern; 2019 May; 49(5):1680-1693. PubMed ID: 29993679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clustering short time series gene expression data.
    Ernst J; Nau GJ; Bar-Joseph Z
    Bioinformatics; 2005 Jun; 21 Suppl 1():i159-68. PubMed ID: 15961453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consensus framework for exploring microarray data using multiple clustering methods.
    Laderas T; McWeeney S
    OMICS; 2007; 11(1):116-28. PubMed ID: 17411399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised multiple kernel learning for heterogeneous data integration.
    Mariette J; Villa-Vialaneix N
    Bioinformatics; 2018 Mar; 34(6):1009-1015. PubMed ID: 29077792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data.
    Chen R; Yang L; Goodison S; Sun Y
    Bioinformatics; 2020 Mar; 36(5):1476-1483. PubMed ID: 31603461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SC(3): Triple spectral clustering-based consensus clustering framework for class discovery from cancer gene expression profiles.
    Zhiwen Y; Le L; Jane Y; Hau-San W; Guoqiang H
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1751-65. PubMed ID: 22868680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data.
    He S; Song X; Yang X; Yu J; Wen Y; Wu L; Yan B; Feng J; Bo X
    PLoS Comput Biol; 2021 Mar; 17(3):e1008769. PubMed ID: 33735194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-task consensus clustering of genome-wide transcriptomes from related biological conditions.
    Niu Z; Chasman D; Eisfeld AJ; Kawaoka Y; Roy S
    Bioinformatics; 2016 May; 32(10):1509-17. PubMed ID: 26801959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the sensitivity of sample clustering by leveraging gene co-expression networks in variable selection.
    Wang Z; San Lucas FA; Qiu P; Liu Y
    BMC Bioinformatics; 2014 May; 15():153. PubMed ID: 24885641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale Embedded Gene Co-expression Network Analysis.
    Song WM; Zhang B
    PLoS Comput Biol; 2015 Nov; 11(11):e1004574. PubMed ID: 26618778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ctsGE-clustering subgroups of expression data.
    Sharabi-Schwager M; Or E; Ophir R
    Bioinformatics; 2017 Jul; 33(13):2053-2055. PubMed ID: 28334165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel bi-level meta-analysis approach: applied to biological pathway analysis.
    Nguyen T; Tagett R; Donato M; Mitrea C; Draghici S
    Bioinformatics; 2016 Feb; 32(3):409-16. PubMed ID: 26471455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.