BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28369331)

  • 1. Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids.
    Lyles CN; Parisi VA; Beasley WH; Van Nostrand JD; Zhou J; Suflita JM
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28369331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs.
    de Rezende JR; Oldenburg TBP; Korin T; Richardson WDL; Fustic M; Aitken CM; Bowler BFJ; Sherry A; Grigoryan A; Voordouw G; Larter SR; Head IM; Hubert CRJ
    Environ Microbiol; 2020 Aug; 22(8):3049-3065. PubMed ID: 32216020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation.
    Beckmann S; Luk AWS; Gutierrez-Zamora ML; Chong NHH; Thomas T; Lee M; Manefield M
    ISME J; 2019 Mar; 13(3):632-650. PubMed ID: 30323265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.
    Yang Y; Chen Q; Guo J; Hu Z
    Water Res; 2015 Dec; 87():112-8. PubMed ID: 26397453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial methanogenesis in subsurface oil and coal.
    Meslé M; Dromart G; Oger P
    Res Microbiol; 2013 Nov; 164(9):959-72. PubMed ID: 23872511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.
    Laban NA; Dao A; Foght J
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin.
    Wawrik B; Mendivelso M; Parisi VA; Suflita JM; Davidova IA; Marks CR; Van Nostrand JD; Liang Y; Zhou J; Huizinga BJ; Strąpoć D; Callaghan AV
    FEMS Microbiol Ecol; 2012 Jul; 81(1):26-42. PubMed ID: 22146015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algal amendment enhances biogenic methane production from coals of different thermal maturity.
    Platt GA; Davis KJ; Schweitzer HD; Smith HJ; Fields MW; Barnhart EP; Gerlach R
    Front Microbiol; 2023; 14():1097500. PubMed ID: 36970672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective trace elements significantly enhanced methane production in coal bed methane systems by stimulating microbial activity.
    Chin K-J; Ünal B; Sanderson M; Aboderin F; Nüsslein K
    Microbiol Spectr; 2024 Feb; 12(2):e0350823. PubMed ID: 38236038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane.
    Singh DN; Kumar A; Sarbhai MP; Tripathi AK
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1337-50. PubMed ID: 22202965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium.
    Jones EJ; Voytek MA; Corum MD; Orem WH
    Appl Environ Microbiol; 2010 Nov; 76(21):7013-22. PubMed ID: 20817801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.
    Jiménez N; Richnow HH; Vogt C; Treude T; Krüger M
    J Mol Microbiol Biotechnol; 2016; 26(1-3):227-42. PubMed ID: 26959375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.
    Pan P; Hong B; Mbadinga SM; Wang LY; Liu JF; Yang SZ; Gu JD; Mu BZ
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7053-7063. PubMed ID: 28730409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of organics transformation and migration on pore structure of bituminous coal and lignite during biomethane production.
    Feng X; Zhang P; Zhang Z; Guo H; Li Z; Huang Z; Urynowicz M; Ali MI
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82834-82850. PubMed ID: 37335506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion.
    Yang Y; Guo J; Hu Z
    Water Res; 2013 Nov; 47(17):6790-800. PubMed ID: 24112628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The variation of microorganisms and organics during methane production from lignite under an electric field.
    Zhang J; Chen C; Guo H; Huang Z; Urynowicz M
    Biotechnol Lett; 2023 Jan; 45(1):83-94. PubMed ID: 36441275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study.
    Beeman RE; Suflita JM
    J Ind Microbiol; 1990 Jan; 5(1):45-57. PubMed ID: 1366376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China.
    Guo H; Yu Z; Liu R; Zhang H; Zhong Q; Xiong Z
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1587-97. PubMed ID: 22286516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation.
    Montag D; Schink B
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1019-26. PubMed ID: 26515561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.