These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28369334)

  • 1. NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.
    He B; Mortuza SM; Wang Y; Shen HB; Zhang Y
    Bioinformatics; 2017 Aug; 33(15):2296-2306. PubMed ID: 28369334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13.
    Li Y; Zhang C; Bell EW; Yu DJ; Zhang Y
    Proteins; 2019 Dec; 87(12):1082-1091. PubMed ID: 31407406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
    Hu X; Dong Q; Yang J; Zhang Y
    Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving accuracy of protein contact prediction using balanced network deconvolution.
    Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB
    Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
    Liu Y; Palmedo P; Ye Q; Berger B; Peng J
    Cell Syst; 2018 Jan; 6(1):65-74.e3. PubMed ID: 29275173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why can deep convolutional neural networks improve protein fold recognition? A visual explanation by interpretation.
    Liu Y; Zhu YH; Song X; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33537753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
    Li Y; Zhang C; Bell EW; Zheng W; Zhou X; Yu DJ; Zhang Y
    PLoS Comput Biol; 2021 Mar; 17(3):e1008865. PubMed ID: 33770072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.