These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28369472)

  • 1. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO
    Shi D; Hong H; Su X; Liao L; Chang S; Lin W
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological imperatives for aquatic CO2-concentrating mechanisms.
    Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3797-3814. PubMed ID: 28645178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification.
    Wu Y; Beardall J; Gao K
    PLoS One; 2015; 10(10):e0141163. PubMed ID: 26496125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum.
    Li M; Young JN
    Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom Phaeodactylum tricornutum at low inorganic carbon concentrations.
    Yu G; Nakajima K; Gruber A; Rio Bartulos C; Schober AF; Lepetit B; Yohannes E; Matsuda Y; Kroth PG
    New Phytol; 2022 Aug; 235(4):1379-1393. PubMed ID: 35596716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.
    Hopkinson BM
    Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diversity and coevolution of Rubisco and CO
    Capó-Bauçà S; Iñiguez C; Galmés J
    New Phytol; 2024 Mar; 241(6):2353-2365. PubMed ID: 38197185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.