These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28369495)

  • 1. Modeling bias and variation in the stochastic processes of small RNA sequencing.
    Argyropoulos C; Etheridge A; Sakhanenko N; Galas D
    Nucleic Acids Res; 2017 Jun; 45(11):e104. PubMed ID: 28369495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2.
    Liu S; Wang Z; Zhu R; Wang F; Cheng Y; Liu Y
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust identification of differentially expressed genes from RNA-seq data.
    Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M
    Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data.
    Park K; An J; Gim J; Seo M; Lee W; Park T; Won S
    BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
    Law CW; Chen Y; Shi W; Smyth GK
    Genome Biol; 2014 Feb; 15(2):R29. PubMed ID: 24485249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No counts, no variance: allowing for loss of degrees of freedom when assessing biological variability from RNA-seq data.
    Lun ATL; Smyth GK
    Stat Appl Genet Mol Biol; 2017 Apr; 16(2):83-93. PubMed ID: 28599403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling RNA-Seq data with a zero-inflated mixture Poisson linear model.
    Liu S; Jiang Y; Yu T
    Genet Epidemiol; 2019 Oct; 43(7):786-799. PubMed ID: 31328831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking association analyses of continuous exposures with RNA-seq in observational studies.
    Sofer T; Kurniansyah N; Aguet F; Ardlie K; Durda P; Nickerson DA; Smith JD; Liu Y; Gharib SA; Redline S; Rich SS; Rotter JI; Taylor KD
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34015820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLSeq: Machine learning interface for RNA-sequencing data.
    Goksuluk D; Zararsiz G; Korkmaz S; Eldem V; Zararsiz GE; Ozcetin E; Ozturk A; Karaagaoglu AE
    Comput Methods Programs Biomed; 2019 Jul; 175():223-231. PubMed ID: 31104710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of differential gene expression analysis of RNA-seq.
    Stupnikov A; McInerney CE; Savage KI; McIntosh SA; Emmert-Streib F; Kennedy R; Salto-Tellez M; Prise KM; McArt DG
    Comput Struct Biotechnol J; 2021; 19():3470-3481. PubMed ID: 34188784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data.
    Al Mahi N; Begum M
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650034. PubMed ID: 27774870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. lncDIFF: a novel quasi-likelihood method for differential expression analysis of non-coding RNA.
    Li Q; Yu X; Chaudhary R; Slebos RJC; Chung CH; Wang X
    BMC Genomics; 2019 Jul; 20(1):539. PubMed ID: 31266446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data.
    Liu X; Zhang L; Chen S
    PLoS One; 2015; 10(10):e0140032. PubMed ID: 26448625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.
    Zhang H; Xu J; Jiang N; Hu X; Luo Z
    Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data.
    Lin B; Zhang LF; Chen X
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S7. PubMed ID: 25560842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Data Transformations for RNA-seq Differential Expression Analysis.
    Zhang Z; Yu D; Seo M; Hersh CP; Weiss ST; Qiu W
    Sci Rep; 2019 Mar; 9(1):4820. PubMed ID: 30886278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.
    Baik B; Yoon S; Nam D
    PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation.
    Love MI; Hogenesch JB; Irizarry RA
    Nat Biotechnol; 2016 Dec; 34(12):1287-1291. PubMed ID: 27669167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.
    Yoon S; Nam D
    BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.
    Bi R; Liu P
    BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.