These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 28369641)
1. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency. Papanatsiou M; Amtmann A; Blatt MR J Exp Bot; 2017 Apr; 68(9):2309-2315. PubMed ID: 28369641 [TBL] [Abstract][Full Text] [Related]
2. Effects of stomata clustering on leaf gas exchange. Lehmann P; Or D New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110 [TBL] [Abstract][Full Text] [Related]
3. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir. Papanatsiou M; Amtmann A; Blatt MR Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168 [TBL] [Abstract][Full Text] [Related]
4. Stomatal clustering in Tsai MY; Kuan C; Guo ZL; Yang HA; Chung KF; Ho CK Plant Environ Interact; 2022 Aug; 3(4):141-154. PubMed ID: 37283607 [TBL] [Abstract][Full Text] [Related]
5. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Meinzer FC; Smith DD; Woodruff DR; Marias DE; McCulloh KA; Howard AR; Magedman AL Plant Cell Environ; 2017 Aug; 40(8):1618-1628. PubMed ID: 28426140 [TBL] [Abstract][Full Text] [Related]
6. Speedy stomata of a C Silva-Alvim FAL; Alvim JC; Harvey A; Blatt MR Plant Cell Environ; 2024 Mar; 47(3):817-831. PubMed ID: 38013592 [TBL] [Abstract][Full Text] [Related]
7. The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. Dow GJ; Berry JA; Bergmann DC New Phytol; 2014 Mar; 201(4):1205-1217. PubMed ID: 24206523 [TBL] [Abstract][Full Text] [Related]
8. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. Wall S; Vialet-Chabrand S; Davey P; Van Rie J; Galle A; Cockram J; Lawson T New Phytol; 2022 Sep; 235(5):1743-1756. PubMed ID: 35586964 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructure and development of non-contiguous stomatal clusters and helicocytic patterning in Begonia. Rudall PJ; Julier ACM; Kidner CA Ann Bot; 2018 Nov; 122(5):767-776. PubMed ID: 29186307 [TBL] [Abstract][Full Text] [Related]
11. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes. Limousin JM; Bickford CP; Dickman LT; Pangle RE; Hudson PJ; Boutz AL; Gehres N; Osuna JL; Pockman WT; McDowell NG Plant Cell Environ; 2013 Oct; 36(10):1812-25. PubMed ID: 23461476 [TBL] [Abstract][Full Text] [Related]
12. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603 [TBL] [Abstract][Full Text] [Related]
14. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Franks PJ; Farquhar GD Plant Physiol; 2001 Feb; 125(2):935-42. PubMed ID: 11161050 [TBL] [Abstract][Full Text] [Related]
15. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments. Jaime R; Serichol C; Alcántara JM; Rey PJ Plant Biol (Stuttg); 2014 Mar; 16(2):354-64. PubMed ID: 23957244 [TBL] [Abstract][Full Text] [Related]
16. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Xiong D; Douthe C; Flexas J Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546 [TBL] [Abstract][Full Text] [Related]
17. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets. Lamour J; Davidson KJ; Ely KS; Le Moguédec G; Leakey ADB; Li Q; Serbin SP; Rogers A Glob Chang Biol; 2022 Jun; 28(11):3537-3556. PubMed ID: 35090072 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of improved aeration due to gas films on leaves of submerged rice. Verboven P; Pedersen O; Ho QT; Nicolai BM; Colmer TD Plant Cell Environ; 2014 Oct; 37(10):2433-52. PubMed ID: 24548021 [TBL] [Abstract][Full Text] [Related]
19. Stomatal function, density and pattern, and CO Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883 [TBL] [Abstract][Full Text] [Related]
20. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. Skelton RP; Brodribb TJ; McAdam SAM; Mitchell PJ New Phytol; 2017 Sep; 215(4):1399-1412. PubMed ID: 28620915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]