These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28369642)

  • 1. Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway.
    Biala W; Banasiak J; Jarzyniak K; Pawela A; Jasinski M
    J Exp Bot; 2017 Jun; 68(12):3231-3241. PubMed ID: 28369642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids.
    Banasiak J; Biala W; Staszków A; Swarcewicz B; Kepczynska E; Figlerowicz M; Jasinski M
    J Exp Bot; 2013 Feb; 64(4):1005-15. PubMed ID: 23314816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago truncatula.
    Liu Y; Hassan S; Kidd BN; Garg G; Mathesius U; Singh KB; Anderson JP
    Mol Plant Microbe Interact; 2017 Sep; 30(9):691-700. PubMed ID: 28510484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins.
    Jarzyniak K; Banasiak J; Jamruszka T; Pawela A; Di Donato M; Novák O; Geisler M; Jasiński M
    Nat Plants; 2021 Apr; 7(4):428-436. PubMed ID: 33753904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation.
    Aloui A; Dumas-Gaudot E; Daher Z; van Tuinen D; Aschi-Smit S; Morandi D
    Plant Physiol Biochem; 2012 Nov; 60():233-9. PubMed ID: 23000816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicarpin confers powdery mildew resistance in Medicago truncatula and activates the salicylic acid signalling pathway.
    Gupta A; Awasthi P; Sharma N; Parveen S; Vats RP; Singh N; Kumar Y; Goel A; Chandran D
    Mol Plant Pathol; 2022 Jul; 23(7):966-983. PubMed ID: 35263504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-size ABC transporters from the ABCG subfamily in medicago truncatula.
    Jasinski M; Banasiak J; Radom M; Kalitkiewicz A; Figlerowicz M
    Mol Plant Microbe Interact; 2009 Aug; 22(8):921-31. PubMed ID: 19589068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of 5-deoxyflavanones in microorganisms.
    Yan Y; Huang L; Koffas MA
    Biotechnol J; 2007 Oct; 2(10):1250-62. PubMed ID: 17806100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restriction of access to the central cavity is a major contributor to substrate selectivity in plant ABCG transporters.
    Pakuła K; Sequeiros-Borja C; Biała-Leonhard W; Pawela A; Banasiak J; Bailly A; Radom M; Geisler M; Brezovsky J; Jasiński M
    Cell Mol Life Sci; 2023 Mar; 80(4):105. PubMed ID: 36952129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins.
    Tzin V; Snyder JH; Yang DS; Huhman DV; Watson BS; Allen SN; Tang Y; Miettinen K; Arendt P; Pollier J; Goossens A; Sumner LW
    Metabolomics; 2019 May; 15(6):85. PubMed ID: 31144047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula.
    Naoumkina M; Farag MA; Sumner LW; Tang Y; Liu CJ; Dixon RA
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):17909-15. PubMed ID: 17971436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula.
    Rodríguez-Celma J; Lin WD; Fu GM; Abadía J; López-Millán AF; Schmidt W
    Plant Physiol; 2013 Jul; 162(3):1473-85. PubMed ID: 23735511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.
    Carletti G; Lucini L; Busconi M; Marocco A; Bernardi J
    Plant Physiol Biochem; 2013 Sep; 70():123-32. PubMed ID: 23774374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust.
    Ishiga Y; Uppalapati SR; Gill US; Huhman D; Tang Y; Mysore KS
    Sci Rep; 2015 Aug; 5():13061. PubMed ID: 26267598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of isoflavonoid biosynthesis in alfalfa.
    Deavours BE; Dixon RA
    Plant Physiol; 2005 Aug; 138(4):2245-59. PubMed ID: 16006598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MtABCG20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula.
    Pawela A; Banasiak J; Biała W; Martinoia E; Jasiński M
    Plant J; 2019 May; 98(3):511-523. PubMed ID: 30661269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and physiological characterization of the monosaccharide transporters gene family in Medicago truncatula.
    Komaitis F; Kalliampakou K; Botou M; Nikolaidis M; Kalloniati C; Skliros D; Du B; Rennenberg H; Amoutzias GD; Frillingos S; Flemetakis E
    J Exp Bot; 2020 May; 71(10):3110-3125. PubMed ID: 32016431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.
    Li P; Dong Q; Ge S; He X; Verdier J; Li D; Zhao J
    Plant Biotechnol J; 2016 Jul; 14(7):1604-18. PubMed ID: 26806316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi.
    Doidy J; van Tuinen D; Lamotte O; Corneillat M; Alcaraz G; Wipf D
    Mol Plant; 2012 Nov; 5(6):1346-58. PubMed ID: 22930732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.
    Mertens J; Pollier J; Vanden Bossche R; Lopez-Vidriero I; Franco-Zorrilla JM; Goossens A
    Plant Physiol; 2016 Jan; 170(1):194-210. PubMed ID: 26589673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.