These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Recombineering linear BACs. Chen Q; Narayanan K Methods Mol Biol; 2015; 1227():27-54. PubMed ID: 25239740 [TBL] [Abstract][Full Text] [Related]
7. A new positive/negative selection scheme for precise BAC recombineering. Wang S; Zhao Y; Leiby M; Zhu J Mol Biotechnol; 2009 May; 42(1):110-6. PubMed ID: 19160076 [TBL] [Abstract][Full Text] [Related]
8. Point mutation of bacterial artificial chromosomes by ET recombination. Muyrers JP; Zhang Y; Benes V; Testa G; Ansorge W; Stewart AF EMBO Rep; 2000 Sep; 1(3):239-43. PubMed ID: 11256606 [TBL] [Abstract][Full Text] [Related]
9. Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Cloning of the A and B Homology Arms into the Shuttle Vector. Heintz N; Gong S Cold Spring Harb Protoc; 2020 Apr; 2020(4):098053. PubMed ID: 32238591 [TBL] [Abstract][Full Text] [Related]
10. Mini-lambda: a tractable system for chromosome and BAC engineering. Court DL; Swaminathan S; Yu D; Wilson H; Baker T; Bubunenko M; Sawitzke J; Sharan SK Gene; 2003 Oct; 315():63-9. PubMed ID: 14557065 [TBL] [Abstract][Full Text] [Related]
11. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome. Cottingham MG; Gilbert SC J Virol Methods; 2010 Sep; 168(1-2):233-6. PubMed ID: 20417665 [TBL] [Abstract][Full Text] [Related]
12. Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs. Westenberg M; Soedling HM; Mann DA; Nicholson LJ; Dolphin CT Nucleic Acids Res; 2010 Sep; 38(16):e166. PubMed ID: 20621982 [TBL] [Abstract][Full Text] [Related]
13. Isolation of specific clones from nonarrayed BAC libraries through homologous recombination. Nefedov M; Carbone L; Field M; Schein J; de Jong PJ J Biomed Biotechnol; 2011; 2011():560124. PubMed ID: 20981149 [TBL] [Abstract][Full Text] [Related]
14. Short homologies efficiently generate detectable homologous recombination events. Osahor AN; Tan CY; Sim EU; Lee CW; Narayanan K Anal Biochem; 2014 Oct; 462():26-8. PubMed ID: 24929088 [TBL] [Abstract][Full Text] [Related]
15. Serial Recombineering Cloning to Build Selectable and Tagged Genomic P[acman] BAC Clones for Selection Transgenesis and Functional Gene Analysis using Drosophila melanogaster. Venken KJT; Matinyan N; Gonzalez Y; Dierick HA Curr Protoc; 2023 Feb; 3(2):e675. PubMed ID: 36757632 [TBL] [Abstract][Full Text] [Related]
16. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Narayanan K; Williamson R; Zhang Y; Stewart AF; Ioannou PA Gene Ther; 1999 Mar; 6(3):442-7. PubMed ID: 10435094 [TBL] [Abstract][Full Text] [Related]
17. Modification of bacterial artificial chromosomes (BACs) and preparation of intact BAC DNA for generation of transgenic mice. Gong S; Yang XW Curr Protoc Neurosci; 2005 May; Chapter 5():Unit 5.21. PubMed ID: 18428623 [TBL] [Abstract][Full Text] [Related]
18. A general method to modify BACs to generate large recombinant DNA fragments. Shen W; Huang Y; Tang Y; Liu DP; Liang CC Mol Biotechnol; 2005 Nov; 31(3):181-6. PubMed ID: 16230767 [TBL] [Abstract][Full Text] [Related]
19. An easy and versatile 2-step protocol for targeted modification and subcloning of DNA from bacterial artificial chromosomes using non-commercial plasmids. Hartwich H; Nothwang HG BMC Res Notes; 2012 Mar; 5():156. PubMed ID: 22433714 [TBL] [Abstract][Full Text] [Related]
20. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Testa G; Zhang Y; Vintersten K; Benes V; Pijnappel WW; Chambers I; Smith AJ; Smith AG; Stewart AF Nat Biotechnol; 2003 Apr; 21(4):443-7. PubMed ID: 12627172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]