These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28369677)

  • 21. Simple and highly efficient BAC recombineering using galK selection.
    Warming S; Costantino N; Court DL; Jenkins NA; Copeland NG
    Nucleic Acids Res; 2005 Feb; 33(4):e36. PubMed ID: 15731329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Verification of Co-Integrates and Selection of Resolved BAC Clones.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Apr; 2020(4):098087. PubMed ID: 32238594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid engineering of bacterial artificial chromosomes using oligonucleotides.
    Swaminathan S; Ellis HM; Waters LS; Yu D; Lee EC; Court DL; Sharan SK
    Genesis; 2001 Jan; 29(1):14-21. PubMed ID: 11135458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes.
    Bird AW; Erler A; Fu J; Hériché JK; Maresca M; Zhang Y; Hyman AA; Stewart AF
    Nat Methods; 2011 Dec; 9(1):103-9. PubMed ID: 22138824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli.
    Tischer BK; von Einem J; Kaufer B; Osterrieder N
    Biotechniques; 2006 Feb; 40(2):191-7. PubMed ID: 16526409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria.
    Cotta-de-Almeida V; Schonhoff S; Shibata T; Leiter A; Snapper SB
    Genome Res; 2003 Sep; 13(9):2190-4. PubMed ID: 12915491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.
    Lee EC; Yu D; Martinez de Velasco J; Tessarollo L; Swing DA; Court DL; Jenkins NA; Copeland NG
    Genomics; 2001 Apr; 73(1):56-65. PubMed ID: 11352566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial artificial chromosome engineering.
    Swaminathan S; Sharan SK
    Methods Mol Biol; 2004; 256():89-106. PubMed ID: 15024162
    [No Abstract]   [Full Text] [Related]  

  • 30. BAC manipulations for making BAC transgene arrays.
    Khanna N; Bian Q; Plutz M; Belmont AS
    Methods Mol Biol; 2013; 1042():197-210. PubMed ID: 23980009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a bacterial artificial chromosome (BAC) recombineering procedure using galK-untranslated region (UTR) for the mutation of diploid genes.
    Dai G; Kim S; O'Callaghan DJ; Kim SK
    J Virol Methods; 2012 Jun; 182(1-2):18-26. PubMed ID: 22407056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli.
    Wong QN; Ng VC; Lin MC; Kung HF; Chan D; Huang JD
    Nucleic Acids Res; 2005 Mar; 33(6):e59. PubMed ID: 15800210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes.
    Hu Z; Ghosh A; Stolze SC; Horváth M; Bai B; Schaefer S; Zündorf S; Liu S; Harzen A; Hajheidari M; Sarnowski TJ; Nakagami H; Koncz Z; Koncz C
    Plant J; 2019 Oct; 100(2):411-429. PubMed ID: 31276249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method.
    Zhang XM; Huang JD
    Nucleic Acids Res; 2003 Aug; 31(15):e81. PubMed ID: 12888533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host.
    Westenberg M; Bamps S; Soedling H; Hope IA; Dolphin CT
    BMC Biotechnol; 2010 Mar; 10():27. PubMed ID: 20350301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved seamless mutagenesis by recombineering using ccdB for counterselection.
    Wang H; Bian X; Xia L; Ding X; Müller R; Zhang Y; Fu J; Stewart AF
    Nucleic Acids Res; 2014 Mar; 42(5):e37. PubMed ID: 24369425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicopy plasmid modification with phage lambda Red recombineering.
    Thomason LC; Costantino N; Shaw DV; Court DL
    Plasmid; 2007 Sep; 58(2):148-58. PubMed ID: 17434584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombineering: genetic engineering in bacteria using homologous recombination.
    Thomason LC; Sawitzke JA; Li X; Costantino N; Court DL
    Curr Protoc Mol Biol; 2014 Apr; 106():1.16.1-1.16.39. PubMed ID: 24733238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient recombination-based methods for bacterial artificial chromosome fusion and mutagenesis.
    Sopher BL; La Spada AR
    Gene; 2006 Apr; 371(1):136-43. PubMed ID: 16487669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.