BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28369701)

  • 21. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit.
    Davidovich-Rikanati R; Lewinsohn E; Bar E; Iijima Y; Pichersky E; Sitrit Y
    Plant J; 2008 Oct; 56(2):228-238. PubMed ID: 18643974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors.
    Alcaíno J; Romero I; Niklitschek M; Sepúlveda D; Rojas MC; Baeza M; Cifuentes V
    PLoS One; 2014; 9(5):e96626. PubMed ID: 24796858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying Structural Determinants of Product Specificity in
    Maheshwari S; Kim YS; Aripirala S; Murphy M; Amzel LM; Gabelli SB
    Biochemistry; 2020 Jul; 59(29):2751-2759. PubMed ID: 32584028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae].
    Li RS; Wang D; Shi YS; Xu LP; Zhang XL; Wang K; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):897-905. PubMed ID: 35285188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A promiscuous prenyltransferase from Aspergillus oryzae catalyses C-prenylations of hydroxynaphthalenes in the presence of different prenyl donors.
    Pockrandt D; Sack C; Kosiol T; Li SM
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4987-94. PubMed ID: 24430210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway - application of PgpB and YbjG phosphatases.
    Wang C; Park JE; Choi ES; Kim SW
    Biotechnol J; 2016 Oct; 11(10):1291-1297. PubMed ID: 27440491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis.
    Mann FM; Thomas JA; Peters RJ
    FEBS Lett; 2011 Feb; 585(3):549-54. PubMed ID: 21237161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unique animal prenyltransferase with monoterpene synthase activity.
    Gilg AB; Tittiger C; Blomquist GJ
    Naturwissenschaften; 2009 Jun; 96(6):731-5. PubMed ID: 19277597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo biosynthesis of linalool from glucose in engineered Escherichia coli.
    Kong S; Fu X; Li X; Pan H; Guo D
    Enzyme Microb Technol; 2020 Oct; 140():109614. PubMed ID: 32912678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of
    Zada B; Wang C; Park JB; Jeong SH; Park JE; Singh HB; Kim SW
    Biotechnol Biofuels; 2018; 11():210. PubMed ID: 30061932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.
    Schilmiller AL; Schauvinhold I; Larson M; Xu R; Charbonneau AL; Schmidt A; Wilkerson C; Last RL; Pichersky E
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10865-70. PubMed ID: 19487664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Escherichia coli for α-farnesene production.
    Wang C; Yoon SH; Jang HJ; Chung YR; Kim JY; Choi ES; Kim SW
    Metab Eng; 2011 Nov; 13(6):648-55. PubMed ID: 21907299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases.
    Kang JH; Gonzales-Vigil E; Matsuba Y; Pichersky E; Barry CS
    Plant Physiol; 2014 Jan; 164(1):80-91. PubMed ID: 24254315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.
    Vattekkatte A; Gatto N; Köllner TG; Degenhardt J; Gershenzon J; Boland W
    Org Biomol Chem; 2015 Jun; 13(21):6021-30. PubMed ID: 25940560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.
    Yue Y; Yu R; Fan Y
    Planta; 2014 Oct; 240(4):745-62. PubMed ID: 25056927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.