These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28369831)
1. Evolutionary adaptation to environmental stressors: a common response at the proteomic level. Sørensen JG; Schou MF; Loeschcke V Evolution; 2017 Jun; 71(6):1627-1642. PubMed ID: 28369831 [TBL] [Abstract][Full Text] [Related]
2. Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines. Griffin PC; Hangartner SB; Fournier-Level A; Hoffmann AA Genetics; 2017 Feb; 205(2):871-890. PubMed ID: 28007884 [TBL] [Abstract][Full Text] [Related]
3. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. Williams BR; VAN Heerwaarden B; Dowling DK; Sgrò CM J Evol Biol; 2012 Jul; 25(7):1415-26. PubMed ID: 22587877 [TBL] [Abstract][Full Text] [Related]
4. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Bubliy OA; Loeschcke V J Evol Biol; 2005 Jul; 18(4):789-803. PubMed ID: 16033550 [TBL] [Abstract][Full Text] [Related]
5. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. Gerken AR; Mackay TF; Morgan TJ J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892 [TBL] [Abstract][Full Text] [Related]
6. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Sørensen JG; Nielsen MM; Loeschcke V J Evol Biol; 2007 Jul; 20(4):1624-36. PubMed ID: 17584255 [TBL] [Abstract][Full Text] [Related]
7. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans. Manenti T; Loeschcke V; Sørensen JG J Insect Physiol; 2018 Jan; 104():40-47. PubMed ID: 29175088 [TBL] [Abstract][Full Text] [Related]
8. Does increased heat resistance result in higher susceptibility to predation? A test using Drosophila melanogaster selection and hardening. Hangartner S; Dworkin I; DeNieu M; Hoffmann AA J Evol Biol; 2017 Jun; 30(6):1153-1164. PubMed ID: 28386918 [TBL] [Abstract][Full Text] [Related]
9. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Camus MF; Wolff JN; Sgrò CM; Dowling DK Mol Biol Evol; 2017 Oct; 34(10):2600-2612. PubMed ID: 28637217 [TBL] [Abstract][Full Text] [Related]
10. Life-history consequences of adaptation to larval nutritional stress in Drosophila. Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389 [TBL] [Abstract][Full Text] [Related]
11. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes. Manenti T; Sørensen JG; Moghadam NN; Loeschcke V Heredity (Edinb); 2016 Sep; 117(3):149-54. PubMed ID: 27273321 [TBL] [Abstract][Full Text] [Related]
12. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Gilchrist GW; Huey RB; Partridge L Physiol Zool; 1997; 70(4):403-14. PubMed ID: 9237300 [TBL] [Abstract][Full Text] [Related]
13. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs. Faria VG; Martins NE; Paulo T; Teixeira L; Sucena É; Magalhães S Evolution; 2015 Nov; 69(11):2799-809. PubMed ID: 26496003 [TBL] [Abstract][Full Text] [Related]
14. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Kristensen TN; Loeschcke V; Hoffmann AA Proc Biol Sci; 2007 Mar; 274(1611):771-8. PubMed ID: 17251092 [TBL] [Abstract][Full Text] [Related]
15. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. Folk DG; Zwollo P; Rand DM; Gilchrist GW J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590 [TBL] [Abstract][Full Text] [Related]
16. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Telonis-Scott M; Gane M; DeGaris S; Sgrò CM; Hoffmann AA Mol Biol Evol; 2012 May; 29(5):1335-51. PubMed ID: 22130970 [TBL] [Abstract][Full Text] [Related]
17. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster. Cockerell FE; Sgrò CM; McKechnie SW J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150 [TBL] [Abstract][Full Text] [Related]
18. Stress specific correlated responses in fat content, Hsp70 and dopamine levels in Drosophila melanogaster selected for resistance to environmental stress. Sørensen JG; Vermeulen CJ; Flik G; Loeschcke V J Insect Physiol; 2009 Aug; 55(8):700-6. PubMed ID: 19446560 [TBL] [Abstract][Full Text] [Related]
19. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Feder ME; Bedford TB; Albright DR; Michalak P Physiol Biochem Zool; 2002; 75(4):325-34. PubMed ID: 12324888 [TBL] [Abstract][Full Text] [Related]
20. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. Singh K; Kochar E; Prasad NG PLoS One; 2015; 10(6):e0129992. PubMed ID: 26065704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]