BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28369931)

  • 1. A farnesoic acid-responsive transcription factor, Hot1, regulates yeast-hypha morphogenesis in Candida albicans.
    Ahn CH; Lee S; Cho E; Kim H; Chung B; Park W; Shin J; Oh KB
    FEBS Lett; 2017 May; 591(9):1225-1235. PubMed ID: 28369931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid.
    Chung SC; Kim TI; Ahn CH; Shin J; Oh KB
    FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.
    Lee HJ; Kim JM; Kang WK; Yang H; Kim JY
    Eukaryot Cell; 2015 Jul; 14(7):671-83. PubMed ID: 26002720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans hyphal initiation and elongation.
    Lu Y; Su C; Liu H
    Trends Microbiol; 2014 Dec; 22(12):707-14. PubMed ID: 25262420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription factor Cas5 suppresses hyphal morphogenesis during yeast-form growth in Candida albicans.
    Kim JM; Moon HY; Lee DW; Kang HA; Kim JY
    J Microbiol; 2021 Oct; 59(10):911-919. PubMed ID: 34491522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in
    Naseem S; Min K; Spitzer D; Gardin J; Konopka JB
    Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.
    Lu Y; Su C; Liu H
    PLoS Pathog; 2012; 8(4):e1002663. PubMed ID: 22536157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans.
    Pendrak ML; Roberts DD
    Med Mycol; 2007 Feb; 45(1):61-71. PubMed ID: 17325946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mss11, a transcriptional activator, is required for hyphal development in Candida albicans.
    Su C; Li Y; Lu Y; Chen J
    Eukaryot Cell; 2009 Nov; 8(11):1780-91. PubMed ID: 19734367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.
    Liu X; Nie X; Ding Y; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis.
    Saputo S; Kumar A; Krysan DJ
    Eukaryot Cell; 2014 Sep; 13(9):1169-80. PubMed ID: 25001410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
    Wang A; Raniga PP; Lane S; Lu Y; Liu H
    Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling.
    Koch B; Barugahare AA; Lo TL; Huang C; Schittenhelm RB; Powell DR; Beilharz TH; Traven A
    Cell Rep; 2018 Nov; 25(8):2244-2258.e7. PubMed ID: 30463019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans.
    Miwa T; Takagi Y; Shinozaki M; Yun CW; Schell WA; Perfect JR; Kumagai H; Tamaki H
    Eukaryot Cell; 2004 Aug; 3(4):919-31. PubMed ID: 15302825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.
    Lindsay AK; Deveau A; Piispanen AE; Hogan DA
    Eukaryot Cell; 2012 Oct; 11(10):1219-25. PubMed ID: 22886999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans.
    Schaekel A; Desai PR; Ernst JF
    BMC Genomics; 2013 Dec; 14(1):842. PubMed ID: 24289325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition.
    Su C; Yu J; Sun Q; Liu Q; Lu Y
    Mol Microbiol; 2018 May; 108(4):410-423. PubMed ID: 29485686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.